首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously found that peroxisomal biogenesis factor 11a (Pex11a) deficiency is associated with a reduction in peroxisome abundance and impaired fatty acid metabolism in hepatocytes, and results in steatosis. In the present study, we investigated whether butyrate induces Pex11a expression and peroxisome proliferation, and studied its effect on lipid metabolism. C57BL/6 mice fed standard chow or a high-fat diet (HFD) were treated with tributyrin, 4-phelybutyrate acid (4-PBA), or the butyrate-producing probiotics (Clostridium butyricum MIYAIRI 588 [CBM]) plus inulin (dietary fiber), and the body weight, white adipose tissue, serum triglycerides, mRNA expression, and peroxisome abundance were evaluated. Tributyrin or 4-PBA treatment significantly decreased body weight and increased hepatic mRNA expression of peroxisome proliferator-activated receptor-α (PPARα) and Pex11a. In addition, 4-PBA treatment increased peroxisome abundance and the expression of genes involved in peroxisomal fatty acid β-oxidation (acyl-coenzyme A oxidase 1 and hydroxysteroid [17-beta] dehydrogenase 4). CBM and inulin administration reduced adipose tissue mass and serum triglycerides, induced Pex11a, acyl-coenzyme A oxidase 1, and hydroxysteroid (17-beta) dehydrogenase 4 genes, and increased peroxisome abundance in mice fed standard chow or an HFD. In conclusion, elevation of butyrate availability (directly through administration of butyrate or indirectly via administration of butyrate-producing probiotics plus fiber) induces PPARα and Pex11a and the genes involved in peroxisomal fatty acid β-oxidation, increases peroxisome abundance, and improves lipid metabolism. These results may provide a new therapeutic strategy against hyperlipidemia and obesity.  相似文献   

2.
Studies in mammals have shown that adiponectin is secreted mainly by adipocytes, and it plays a crucial role in glucose and lipid metabolism in muscles. Clarifying the cross-talk role of adiponectin between adipose tissue and skeletal muscle tissue is very important for internal homeostasis. The glucose and lipid metabolism of chicken is different from that of mammals, and the role of adiponectin in chickens is unclear. Therefore, it is of great significance to study the effect and mechanism of adiponectin on lipid metabolism in chickens. In the present study, the regulating effect of adiponectin on lipid metabolism in chicken myoblasts was explored by adding a certain concentration of exogenous recombinant adiponectin. Results showed that adiponectin reduced intracellular lipid content, increasing the mRNA expression of adiponectin receptor and cellular uptake of glucose and fatty acids. In addition, adiponectin activated the 5′ adenosine monophosphate activated protein kinase (AMPK) signaling pathway. The above results suggested that adiponectin reduced intracellular lipid content, mainly by binding to adiponectin receptor, activating AMPK pathway, increasing cellular uptake of glucose and fatty acids and promoting lipid oxidation.  相似文献   

3.
In order to study the mechanism of monoclonal antibody (McAb) against a porcine 40-kDa adipocyte-specific plasma membrane protein in reducing fat deposition, porcine primary adipocytes were treated with the McAb during the process of adipocyte differentiation; its effect on expression of lipid metabolism related genes was investigated. Adipocytes were treated with 1-methyl-3-isobutylmethylxanthine (IDX) plus 10 μg/mL of the McAb or without McAb. The mRNA levels of adipocyte differentiation related genes (PPARγ and C/EBPα), lipid metabolism related genes (FAS, HSL, CPT-1B, DGAT and A-FABP) and adiponectin gene (AdipoQ) were determined using real-time quantitative PCR. The results showed that the differentiated adipocyte number and triglyceride (TG) content in adipocytes treated with the McAb were lower than that in cells without McAb during the whole process of adipocyte differentiation. The McAb significantly reduced mRNA expression of PPARγ, C/EBPα, FAS, DGAT, A-FABP and adiponectin genes, but increased mRNA expression of HSL and CPT-1B genes during the medium and latter stage of adipocyte differentiation. This suggested that the McAb decreased triglycerol accumulation in adipocyte by both inhibiting adipocyte differentiation and regulating lipid metabolism, especially at the medium and latter stage of porcine adipocyte differentiation.  相似文献   

4.
寄生于人体的肠道菌群是一个高度动态化和个体化的复杂生态系统,受遗传、环境、饮食、年龄和运动等因素的影响,并通过其产生的代谢物与机体众多组织器官产生广泛的应答效应。短链脂肪酸(short chain fatty acid, SCFA)主要是由位于盲肠和结肠内的菌群以膳食纤维为底物发酵产生,其被吸收进入肠系膜上下静脉,随后汇入门静脉至肝。部分短链脂肪酸被肝作为糖异生和脂质合成的底物,剩余的短链脂肪酸以游离脂肪酸的形式经肝静脉进入外周循环。研究发现,运动可使产生SCFA的肠道菌群组分的丰度提高和参与调控SCFA生成的相关基因表达增加,使肠道中短链脂肪酸含量增加。由短链脂肪酸刺激结肠内分泌细胞合成分泌的胰高血糖素样肽1(glucagon like peptide-1, GLP-1)可促使胰岛B细胞合成分泌胰岛素,进而调节骨骼肌的葡萄糖摄取与糖原合成。此外,短链脂肪酸通过提高骨骼肌胰岛素受体底物1(insulin receptor substrate 1,IRS1)基因转录起始位点附近的组蛋白乙酰化水平,增强骨骼肌的胰岛素敏感性。同时,短链脂肪酸通过激活腺苷酸活化蛋白质激酶(AMP-activated protein kinase, AMPK)促进骨骼肌的脂肪酸摄取、脂肪分解和线粒体生物发生,抑制脂肪合成。本文就肠道菌群代谢物——短链脂肪酸概述、运动对产生短链脂肪酸的肠道菌群的影响和运动介导肠道菌群代谢物——短链脂肪酸对骨骼肌代谢调控机制的最新研究进展进行综述,为骨骼肌运动适应的新机制研究提供理论依据。  相似文献   

5.
6.
AMP-activated protein kinase (AMPK) β subunits (β1 and β2) provide scaffolds for binding α and γ subunits and contain a carbohydrate-binding module important for regulating enzyme activity. We generated C57Bl/6 mice with germline deletion of AMPK β2 (β2 KO) and examined AMPK expression and activity, exercise capacity, metabolic control during muscle contractions, aminoimidazole carboxamide ribonucleotide (AICAR) sensitivity, and susceptibility to obesity-induced insulin resistance. We find that β2 KO mice are viable and breed normally. β2 KO mice had a reduction in skeletal muscle AMPK α1 and α2 expression despite up-regulation of the β1 isoform. Heart AMPK α2 expression was also reduced but this did not affect resting AMPK α1 or α2 activities. AMPK α1 and α2 activities were not changed in liver, fat, or hypothalamus. AICAR-stimulated glucose uptake but not fatty acid oxidation was impaired in β2 KO mice. During treadmill running β2 KO mice had reduced maximal and endurance exercise capacity, which was associated with lower muscle and heart AMPK activity and reduced levels of muscle and liver glycogen. Reductions in exercise capacity of β2 KO mice were not due to lower muscle mitochondrial content or defects in contraction-stimulated glucose uptake or fatty acid oxidation. When challenged with a high-fat diet β2 KO mice gained more weight and were more susceptible to the development of hyperinsulinemia and glucose intolerance. In summary these data show that deletion of AMPK β2 reduces AMPK activity in skeletal muscle resulting in impaired exercise capacity and the worsening of diet-induced obesity and glucose intolerance.  相似文献   

7.
Adiponectin, an adipocyte-derived insulin-sensitizing and anti-inflammatory hormone, is suppressed in obesity through mechanisms involving chronic inflammation and oxidative stress. Olive oil consumption is associated with beneficial cardiometabolic actions, with possible contributions from the antioxidant phenol hydroxytyrosol (HT) and the monounsaturated fatty acid oleic acid (OA, 18:1n-9 cis), both possessing anti-inflammatory and vasculo-protective properties. We determined the effects of HT and OA, alone and in combination, on adiponectin expression in human and murine adipocytes under pro-inflammatory conditions induced by the cytokine tumor necrosis factor(TNF)-α. We used human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes and murine 3T3-L1 adipocytes as cell model systems, and pretreated them with 1-100 μmol/L OA, 0.1-20 μmol/L HT or OA plus HT combination before stimulation with 10 ng/mL TNF-α. OA or HT significantly (P<0.05) prevented TNF-α-induced suppression of total adiponectin secretion (by 42% compared with TNF-α alone) as well as mRNA levels (by 30% compared with TNF-α alone). HT and OA also prevented—by 35%—TNF-α-induced downregulation of peroxisome proliferator-activated receptor PPARγ. Co-treatment with HT and OA restored adiponectin and PPARγ expression in an additive manner compared with single treatments. Exploring the activation of JNK, which is crucial for both adiponectin and PPARγ suppression by TNF-α, we found that HT and OA additively attenuated TNF-α-stimulated JNK phosphorylation (up to 55% inhibition). In conclusion, the virgin olive oil components OA and HT, at nutritionally relevant concentrations, have additive effects in preventing adiponectin downregulation in inflamed adipocytes through an attenuation of JNK-mediated PPARγ suppression.  相似文献   

8.
Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes.  相似文献   

9.
The n-3 polyunsaturated fatty acids (PUFAs), EPA and DHA, as well as estrogen have been shown to decrease circulating levels of triglyceride (TG), but their underlying mode of action is unclear. The purpose of this study was to determine the effects of n-3 PUFA consumption and estrogen injection on TG metabolism. Rats (n = 48) were fed a modified AIN-93G diet with 0, 1, or 2 % EPA + DHA relative to the total energy intake during 12 weeks. At 8 weeks, rats were ovariectomized (OVX), and after a 1-week recovery, rats were injected with either 17β-estradiol-3-benzoate (E2) or corn oil for the last 3 weeks. The n-3 PUFA consumption and E2 injection independently decreased the hepatic expressions of sterol regulatory element-binding protein 1, acetyl-CoA carboxylase 1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2) (P < 0.05). There were interactions between n-3 PUFA consumption and E2 injection on hepatic expression of FAS and DGAT2. In addition, n-3 PUFA consumption and E2 injection up-regulated the expression of AMP-activated protein kinase (AMPK), phosphorylated AMPK, peroxisomal proliferator-activated receptor α, and carnitine palmitoyltransferase 1 in liver and skeletal muscle. E2 injection increased the expression of estrogen receptor α and β in skeletal muscle and liver, but n-3 PUFA consumption increased the expression of both receptors only in skeletal muscle. The present study suggests that the hypotriglyceridemic effects of n-3 PUFA consumption and E2 injection could be due to the down-regulation of hepatic TG synthesis and up-regulation of TG oxidation in liver and skeletal muscle in OVX rats.  相似文献   

10.
Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM) confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR)-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.  相似文献   

11.
12.
In the present study, mature adipocytes from pig-derived visceral and intramuscular adipose depots were isolated, purified, and allowed to undergo dedifferentiation and redifferentiation in vitro. During the redifferentiation process at days 1, 2, 4, 6, and 8, we observed that both visceral- and intramuscular adipose-derived progeny cells possessed a similar capacity to accumulate lipid. However, at days 10, 12, 14, and 16, the latter progeny cells accumulated lipid much faster--the content almost doubled at day 16 (P < 0.05). Such faster potential of lipid accumulation in the intramuscular adipose-derived progeny cells was then supported by higher expressions of CCAAT/enhancer binding protein-α (CEBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) at all these nine time points, and diacylglycerol O-acyltransferase homolog 1 (DGAT1), fatty acid binding protein 4 (FABP4) and fatty acid synthase (FASN) at some time points (P < 0.05). These preliminary data suggest that adipose depot differences exist with respect to ability of purified cells of the adipose lineage to redifferentiate and form viable lipid-assimilating cells in vitro. Therefore, our present study might provide a foundation to develop tools for biomedical and agricultural applications, as well as to determine the regulation of depot-specific cells of the adipose lineage. Further studies with more animals will validate and expand our results.  相似文献   

13.
14.

Background

AMPK is a promising pharmacological target in relation to metabolic disorders partly due to its non-insulin dependent glucose uptake promoting role in skeletal muscle. Of the 2 catalytic α-AMPK isoforms, α2 AMPK is clearly required for stimulation of glucose transport into muscle by certain stimuli. In contrast, no clear function has yet been determined for α1 AMPK in skeletal muscle, possibly due to α-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H2O2 stimulation to activate α1 AMPK, but not α2 AMPK, in wildtype and α-AMPK transgenic mouse muscles, this study aimed to define conditions where α1 AMPK is required to increase muscle glucose uptake.

Methodology/Principal Findings

Following stimulation with H2O2 (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), α1 AMPK knockout or α2 AMPK knockout mice. H2O2 increased the activity of both α1 and α2 AMPK in addition to Akt phosphorylation, and H2O2-stimulated glucose uptake was not reduced in any of the AMPK transgenic mouse models compared with wild type. In contrast, twitch-contraction increased the activity of α1 AMPK, but not α2 AMPK activity nor Akt or AS160 phosphorylation. Glucose uptake was markedly lower in α1 AMPK knockout and KD AMPK muscles, but not in α2 AMPK knockout muscles, following twitch stimulation.

Conclusions/Significance

These results provide strong genetic evidence that α1 AMPK, but not α2 AMPK, Akt or AS160, is necessary for regulation of twitch-contraction stimulated glucose uptake. To our knowledge, this is the first report to show a major and essential role of α1 AMPK in regulating a physiological endpoint in skeletal muscle. In contrast, AMPK is not essential for H2O2-stimulated muscle glucose uptake, as proposed by recent studies.  相似文献   

15.
16.
Aim: Previous studies have demonstrated that the dysregulated-secretion of adipokines by adipocytes may contribute to obesity-associated atherosclerosis (As) and high density lipoprotein (HDL) may protect against atherogenesis through multiple pathways. This study was to explore the effect of HDL on the oxLDL uptake in inflammatory adipocytes stimulated by endotoxin lipopolysaccharide (LPS) and the possible mechanism.Methods and Results: 3T3-L1 adipocytes were cultured and induced to differentiation and maturation. Acute inflammation in adipocytes was induced by LPS (100 ng/ml) for 6 hours. The adipocytes were pretreated with HDL in various concentrations (10, 50, 100 μg/ml) for 16 hours or with specific PPARγ antagonist (GW9662, 10 μM) or agonist (Rosiglitazone, 10 μM) for 30 min before administration of LPS. The results showed that LPS significantly increased the release of inflammation-related adipokines, such as monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor 1 (PAI-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-8 and IL-6, while decreasing the release of leptin and adiponectin. Meanwhile, LPS reduced the uptake and degradation of 125I-oxLDL, and down-regulated the expression of PPARγ and CD36. Pretreatment with HDL dose-dependently affected the release of IL-8 and IL-6 and the reduced uptake and degradation of oxLDL of adipocytes stimulated by LPS, accompanied with marked upregulation of PPARγ and CD36 expression. Pretreatment with GW9662 markedly inhibited the upregulation of CD36 expression mediated by HDL (100 μg/ml), while the effects of Rosiglitazone were opposite to GW9662.Conclusions: HDL may increase oxLDL uptake of inflammatory adipocytes stimulated by LPS via upregulation of PPARγ/CD36 pathway, which may be a new mechanism of anti-atherosclerosis mediated by HDL.  相似文献   

17.
In this study, we aim to determine cellular mechanisms linking nutrient metabolism to the regulation of inflammation and insulin resistance. The nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 show striking similarities in nutrient sensing and regulation of metabolic pathways. We find that the expression, activity, and signaling of the major isoform α1AMPK in adipose tissue and macrophages are substantially down-regulated by inflammatory stimuli and in nutrient-rich conditions, such as exposure to lipopolysaccharide (LPS), free fatty acids (FFAs), and diet-induced obesity. Activating AMPK signaling in macrophages by 5-aminoimidazole-4-carboxamide-1-β4-ribofuranoside or constitutively active α1AMPK (CA-α1) significantly inhibits; although inhibiting α1AMPK by short hairpin RNA knock-down or dominant-negative α1AMPK (DN-α1) increases LPS- and FFA-induced tumor necrosis factor α expression. Chromatin immunoprecipitation and luciferase reporter assays show that activation of AMPK by CA-α1 in macrophages significantly inhibits LPS- or FFA-induced NF-κB signaling. More importantly, in a macrophage-adipocyte co-culture system, we find that inactivation of macrophage AMPK signaling inhibits adipocyte insulin signaling and glucose uptake. Activation of AMPK by CA-α1 increases the SIRT1 activator NAD+ content and SIRT1 expression in macrophages. Furthermore, α1AMPK activation mimics the effect of SIRT1 on deacetylating NF-κB, and the full capacity of AMPK to deacetylate NF-κB and inhibit its signaling requires SIRT1. In conclusion, AMPK negatively regulates lipid-induced inflammation, which acts through SIRT1, thereby contributing to the protection against obesity, inflammation, and insulin resistance. Our study defines a novel role for AMPK in bridging the signaling between nutrient metabolism and inflammation.  相似文献   

18.
The retinoic acid receptor-related orphan receptor (ROR) alpha has been demonstrated to regulate lipid metabolism. We were interested in the RORα1 dependent physiological functions in skeletal muscle. This major mass organ accounts for ∼40% of the total body mass and significant levels of lipid catabolism, glucose disposal and energy expenditure. We utilized the strategy of targeted muscle-specific expression of a truncated (dominant negative) RORα1ΔDE in transgenic mice to investigate RORα1 signaling in this tissue. Expression profiling and pathway analysis indicated that RORα influenced genes involved in: (i) lipid and carbohydrate metabolism, cardiovascular and metabolic disease; (ii) LXR nuclear receptor signaling and (iii) Akt and AMPK signaling. This analysis was validated by quantitative PCR analysis using TaqMan low-density arrays, coupled to statistical analysis (with Empirical Bayes and Benjamini–Hochberg). Moreover, westerns and metabolic profiling were utilized to validate the genes, proteins and pathways (lipogenic, Akt, AMPK and fatty acid oxidation) involved in the regulation of metabolism by RORα1. The identified genes and pathways were in concordance with the demonstration of hyperglycemia, glucose intolerance, attenuated insulin-stimulated phosphorylation of Akt and impaired glucose uptake in the transgenic heterozygous Tg-RORα1ΔDE animals. In conclusion, we propose that RORα1 is involved in regulating the Akt2-AMPK signaling pathways in the context of lipid homeostasis in skeletal muscle.  相似文献   

19.
Zhang Q  Zhang Y  Feng H  Guo R  Jin L  Wan R  Wang L  Chen C  Li S 《PloS one》2011,6(8):e23556

Background

High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells.

Methods and Results

Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[3H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells.

Conclusions

HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.  相似文献   

20.
Adiponectin, an adipokine with insulin-sensitizing effect, is secreted from adipocytes into circulation as high, medium, and low molecular weight forms (HMW, MMW, and LMW). The HMW adiponectin oligomers possess the most potent insulin-sensitizing activity. WSF-P-1(N-methyl-1,2,3,4,5,6-hexahydro-1,1,5,5-tetramethyl-7H-2,4α-methanonaphthalen-7-amine) is derived from natural sesquiterpene longifolene by chemical modifications. We found that WSF-P-1 activates AMPK in both 3T3-L1 adipocytes and 293T cells in this study. Activation of AMPK by WSF-P-1 promotes the assembly of HMW adiponectin and increases the HMW/total ratio of adiponectin in 3T3-L1 adipocytes. We demonstrated that the Ca2+-dependent CaMKK signaling pathway is involved in WSF-P-1-induced AMPK activation and adiponectin multimerization. WSF-P-1 also activates GLUT1-mediated glucose uptake in 3T3-L1 adipocytes, making it a potential drug candidate for the treatment of type 2 diabetes, obesity, and other obesity-related metabolic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号