共查询到20条相似文献,搜索用时 0 毫秒
1.
马尾松是我国南方地区广泛分布的先锋造林树种。在全球变暖、气候干旱化和虫灾频发的趋势下,研究马尾松对环境干扰的生态弹性对森林管理有重要意义。本文对福建省仙游县百松村的马尾松古树进行树木年轮样品采集,建立区域首个马尾松树轮宽度标准年表(1865—2014年)。结果表明: 当年7—9月低相对湿度和5—9月极端高温是树木生长的主要限制因素。根据树轮极端窄年确定1869、1889、1986、1991和1993是极端事件年。时序叠加分析发现,极端事件发生前两年的持续低值加剧了极端事件的影响。干旱年份更容易引发虫灾。1889年是受虫灾影响最严重的年份,1986和1991年受到虫灾和干旱气候的双重影响,其余极端年主要受干旱气候的影响。树木对虫灾的抵抗力弱于对干旱事件的抵抗力;除1991年外,树木对虫灾的相对弹性力高于对干旱事件的相对弹性力。1889年的相对弹性力最高,1991年受到连续极端事件的影响,相对弹性力最低。2000年以来研究区干旱化趋势加强,马尾松古树遭受干旱和虫灾的干扰加强,部分树木死亡。 相似文献
2.
选取福建中西部地区相似气候条件下马尾松和杉木的天然林和人工林进行研究,利用年轮宽度、年轮宽度指数和断面积增量重建了4种林型共109株松树20年(1993—2012年)的年生长量,计算其对连续两次极端干旱事件(2003—2004年和2011年)的抵抗力、恢复力和弹性指数,分析人工林和天然林在抵抗力和弹性方面的差异。结果表明:马尾松和杉木对水分的需求在时间上存在差异,这解释了其对2003—2004年干旱事件的响应不一致。干旱压力极大地降低了马尾松和杉木的生长,但树木生长并未表现出干旱遗留效应。受干旱强度的影响,4种林型径向生长对2003—2004年干旱的响应强于2011年。干旱事件后马尾松比杉木具有更强的恢复能力;天然林比人工林对干旱的敏感性更高,同时弹性也更大。杉木人工林更容易受到频发的极端干旱事件的影响,在人工林抚育管理中应选择抗旱能力较强的遗传种源,以应对气候变暖导致的干旱频发。 相似文献
3.
4.
Arun K. Bose Arthur Gessler Andreas Bolte Alessandra Bottero Allan Buras Maxime Cailleret J. Julio Camarero Matthias Haeni Ana‐Maria Here Andrea Hevia Mathieu Lvesque Juan C. Linares Jordi Martinez‐Vilalta Luis Matías Annette Menzel Raúl Snchez‐Salguero Matthias Saurer Michel Vennetier Daniel Ziche Andreas Rigling 《Global Change Biology》2020,26(8):4521-4537
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation. 相似文献
5.
Climatic harshness is expected to increase at higher elevations; however, elevational trends of tree radial growth response of high-elevation forests to climate change need to be investigated at different locations because of existing local variability in site-specific climatic conditions. We developed tree-ring width chronologies of Yunnan fir (Abies georgei) along elevation gradients at two sites in the central Hengduan Mountains (HM). High-elevation forests of A. georgei showed growth synchronicity and common growth signals along elevation gradients, indicating a common climatic forcing, although tree radial growth rates decreased with increasing elevation. Radial growth of Yunnan fir showed positive correlations with summer temperatures and February precipitation and moisture availability, but were negatively correlated with spring temperatures. The strongest positive relationship indicated summer (July) mean and minimum temperatures are the most important growth determining climatic factors for tree radial growth in the cold environment of HM, and this relationship revealed a clear elevational trend with stronger correlations at higher altitudes. In contrast, tree radial growth was negatively correlated with June precipitation and moisture availability. The whole study period 1954–2015 was split in two sub-periods of equal length. Comparing the early sub-period (1954–1984) to the later sub-period (1985–2015), tree growth response to the summer temperatures strongly increased, while it became weaker to June precipitation and moisture availability. High-elevation Yunnan fir forests in the HM currently benefit from elevated growing season temperatures under humid summer conditions. However, increasing temperatures may induce drought stress on tree radial growth if the observed decreasing trend in humidity and precipitation continues. 相似文献
6.
《Dendrochronologia》2014,32(3):210-219
European black pine (Pinus nigra ssp. nigra Arnold) encroachment at increasing elevation has been analyzed at four treeline ecotones of the central Apennines (Italy). The study sites are located along a North-South gradient of 170 km across Marche and Abruzzo regions in Central Italy. The aims of this study were: (i) to detect possible common patterns of structural attributes of black pine regeneration at the treeline ecotone; (ii) to date the seedlings germination and (iii) to assess the climate influence on the pine upward encroachment process also using intra-annual density fluctuations (IADFs) in tree-rings. We sampled 658 encroached black pine trees above the current treeline to the mountain top. All individuals were mapped and their basal stem diameter, total height, annual height increments and other structural attributes measured. One increment core was extracted from stem base of most samples for cambial age determination and detection of intra-annual density fluctuations (IADF). At two sites we also extracted cores at DBH from forest trees to assess climate–growth relationships of black pine. We used multivariate analysis (PCA) to explore the correlation structure of the main tree attributes, regression analysis to relate radial and height increment and dendroclimatic analysis to assess the influence of climate on tree growth and IADF formation.Most black pine trees were located at high altitude and their structural attributes were similar at the four sites where the pine encroachment process started between 30 and 40 years ago featuring similar germination peaks and growth patterns. Black pine is particularly sensitive to maximum temperatures and IADF occurred in mid-late summer with highest frequency peaks between 2003 and 2004. The pine encroachment process, besides the differences of environmental features and land use histories of the four study sites, appears synchronic and spatially diffused. Consistent tree-growth dynamics and the species adaptation to a warming climate are signals envisaging a possible treeline upward shift. 相似文献
7.
Climate warming and increasing aridity have impacted diverse ecosystems in the Mediterranean region since at least the 1970s. Pinus pinea L. has significant environmental and socio-economic importance for the Iberian Peninsula, so a detailed understanding of its response to climate change is necessary to predict its status under future climatic conditions. However, variability of climate and uncertainties in dendroclimatological approach complicate the understanding of forest growth dynamics. We use an ensemble approach to analyze growth-climate responses of P. pinea trees from five sites along a latitudinal gradient in Spain over time. The growth responses to April-June precipitation totals were stronger in the north than in the south. Since the 1950s, the sensitivity of growth to April-June precipitation increased in the north and decreased in the south. Meteorological drought usually started in May in the southern sites, but in June-July in the northern sites. The water deficit in the southern sites is thus greater and more limiting for tree growth, and this likely accounts for the lower growth sensitivity during these months. Our results indicate that P. pinea has a high degree of plasticity, suggesting the species will withstand changing climatic conditions. However, growth response to drought regimes varies among P. pinea populations, suggesting that different populations have different capacities for acclimation to warmer and drier climate, and this may influence future vegetation composition. 相似文献
8.
A better understanding of growth-climate responses of high-elevation tree species across their distribution range is essential to devise an appropriate forest management and conservation strategies against adverse impacts of climate change. The present study evaluates how radial growth of Himalayan fir (Abies spectabilis D. Don) and its relation to climate varies with elevation in the Manaslu Mountain range in the central Himalaya. We developed tree-ring width chronologies of Himalayan fir from three elevational belts at the species’upper distribution limit (3750−3900 m), in the middle range (3500−3600 m), and at the lower distribution limit (3200−3300 m), and analyzed their associations with climatic factors. Tree growth of Himalayan fir varied synchronously across elevational belts, with recent growth increases observed at all elevations. Across the elevation gradient, radial growth correlated positively (negatively) with temperature (precipitation and standardized precipitation-evapotranspiration index, SPEI-03) during the summer (July to September) season. However, the importance of summer (July to September) temperatures on radial growth decreased with elevation, whereas correlations with winter (previous November to current January) temperatures increased. Correlations with spring precipitation and SPEI-03 changed from positive to negative from low to high elevations. Moving correlation analysis revealed a persistent response of tree growth to May and August temperatures. However, growth response to spring moisture availability has strongly increased in recent decades, indicating that intensified spring drought may reduce growth rates of Himalayan fir at lower elevations. Under sufficient moisture conditions, increasing summer temperature might be beneficial for fir trees growing at all elevations, while trees growing at the upper treeline will take additional benefit from winter warming. 相似文献
9.
Global climate change has led to rising temperatures and drought in boreal forests in Northeast China. In some areas, shrubs and trees coexist in high altitude and high latitude areas, and their differences with global warming may lead to significant changes in vegetation composition and distribution. Therefore, we compared the relationships between climate and growth for the most widely distributed dwarf shrub (Pinus pumila) and the two dominant tree species (Larix gmelinii and Pinus sylvestris var. mongolica) in boreal forests in the Daxing’an Mountains, China. A total of 340 tree-ring cores from 172 trees and 64 discs from shrubs were collected from four sites and compared the responses of shrub and tree growth to climate patterns using dendrochronological methods. The shrub and two tree species responded differently to interannual climate variance. The negative effect of growing season temperature was greater on growth of L.gmelinii and P. sylvestrisvar.mongolica than on P. pumila, and the promoting effect of winter and spring precipitation was greatest on P. pumila. Compared with the two tree species, P. pumila had a higher temperature threshold and grew over a shorter growing season. Our findings suggested that L. gmelinii and P. sylvestrisvar.mongolica are more susceptible to global warming than the shrubs that coexist with them. However, P.pumila should be studied from an individual perspective in the future due to the dwarf morphology of shrubs and their complex microenvironment. 相似文献
10.
Climate change has profound effects on forest ecosystems. Schrenk spruce (P. schrenkiana) is a natural conifer species endemic to the arid inland areas of Asia. In this study, the relationship between tree-ring parameters of P. schrenkiana and major meteorological factors were analyzed, and the main limiting factors for tree radial growth and stable carbon isotope fractionation were explored. Our results indicate that moisture stress before and during the growing season have an important influence on radial growth of P. schrenkiana, especially, the correlation coefficient between tree-ring width and vapor pressure deficit (VPD) from previous August to current July is as high as −0.622 (n = 51, p < 0.01). Collinearity analysis further supports the conclusion that the limiting factor for the radial growth of P. schrenkiana is moisture. Although the correlation analysis results show that the tree-ring δ13Ccorr is significantly positively correlated with sunshine duration (SD), additional analysis based on first order difference variables suggests that the climate factor may not be the only limiting factor for the stable carbon isotope fractionation of tree rings in the Sayram Lake Basin. This lays the foundation for the assessment of forest management practices and carbon sink capacity in light of future climate change. 相似文献
11.
Wildfires are natural and ubiquitous disturbances in boreal forests. Assessing their impacts on tree growth and resilience are particularly important to recognize the adaptation strategies of fire-tolerant species and forest succession in fire conditions. To date, the growth resilience of fire-tolerant species in boreal forests remains largely unquantified, and the drivers of resilience are poorly understood. Here, we measured the tree-ring widths of 99 fire-scarred trees from three sites in natural Dahurian larch (Larix gmelinii) forests. Three moderate-severity fire events in years 1987, 1990, and 2000 occurring at three sites were detected from the records of local forestry bureau. Based on tree-ring width data, we calculated resilience components (i.e., resistance, recovery, resilience and relative resilience) to quantify the responses of growth resilience in the larch trees to fires and analyzed their drivers at three sites. Results indicated that fires significantly reduced the tree growth. With the increasing tree age, these reductions were more pronounced. As for resilience components, our study showed a limited resistance but high recovery of tree growth against fires, and resistance tended to increase northwards but recovery showed the opposite, suggesting a growth-survival tradeoff was exhibited in Dahurian larch trees. With an increasing tree age, regional resistance and resilience showed a decreasing trend, whereas recovery and relative resilience showed an increasing trend. Resilience components were mainly affected by the climatic factors in spring. An increase in moisture availability enhanced resistance, a reduction in diurnal temperature range enhanced recovery, and an increase in mean temperature enhanced resilience and relative resilience. This study reveals that Dahurian larch could be even less favorable when faced with moderate or severe fire events, but a high capacity of recovery enables this species to adapt to the fire-prone condition. Moreover, this work highlights that the resilience of tree growth should be considered to understand tree behaviors and survival strategies of boreal forests following fires across fire-prone regions under future climate warming. 相似文献
12.
Precipitation is one of the most important climate factors controlling tree growth, yet it is not fully understood how changes in precipitation affect the relationship between growth and temperature. On the northeastern edge of the Tibetan Plateau, nine tree-ring chronologies of Picea crassifolia were developed along a precipitation gradient from semi-arid (mean annual precipitation, 255 mm) to semi-humid (710 mm). We analyze the growth-climate relationships along this precipitation gradient and assess whether these associations are regulated by local precipitation. From 1960 to 2014, temperature increased significantly while precipitation remained stable at the nine sampling sites. The radial growth of P. crassifolia decreased at the semi-arid sites but increased at the semi-humid sites. Growth-temperature relationships gradually changed from negative to positive along the precipitation gradient (from dry to wet sites), particularly during summer. The moist P. crassifolia sites are also characterized by positive correlations with the Palmer Drought Severity Index. The temporal growth-temperature relationships varied significantly among the different spruce sites over the last five decades. Although temperature remains the main factor controlling the growth of P. crassifolia, local precipitation variability is becoming increasingly important. Our findings indicate that considering species distribution areas supports the analyses of the impact of climate change on tree growth. 相似文献
13.
Central Asia is the world’s largest non-zonal arid area, with rare and uneven precipitation. As a sensitive area of global change and with a vulnerable ecological environment, Central Asia is largely affected by global change. Various long-lived conifer species widely distributed in the mountains of Central Asia have become an important proxy for studying historical climatic, hydrological, and vegetation changes in this region. This paper reviews research progress on tree rings in Central Asia; specifically, the current state of research is addressed, highlights and bottleneck problems associated with the research are analyzed and discussed, and suggestions and prospects for further study of dendrochronology in this area are proposed. 相似文献
14.
基于树干解析和树轮分析,结合野外调查,揭示了我国主要外来树种--湿地松(Pinus elliottii)的生长规律,从而为人工林经营管理和生态系统服务功能评估提供了依据。2005年调查了1948年江西吉安青原山引种后存留的564株湿地松(1954 1958年生)。胸径(DBH, diameter at breast height)平均值为34.2 cm(18.4-58cm),树高平均值为19.5 m(9-33m)。青原山湿地松树轮分析结果显示:52年间,年树轮宽度增长量平均值为0.32 cm,最大年增长量不超过1.14 cm。胸径年生长量总体上呈下降趋势,直径生长高峰出现在10a左右;林龄达到20a左右时,直径年生长量开始下降;林龄40a后,生长变得极为缓慢。距青原山西南100km的千烟洲湿地松林(20年生)胸径和树高平均值分别为15.9 cm和11.0 m;20a的胸径生长量平均值为0.86 cm;材积方程为V= 0.0000213 D2.9870924(V为带皮材积,D为胸径)。千烟洲湿地松林生物量低于同期营造的马尾松(Pinus massoniana)林生物量,也明显低于中亚热带地带性植被樟树(Cinnamomum camphora)林的生物量。经比较发现,引种营造的湿地松林,其生长量远不如原产地美国佛罗里达州湿地松林。 相似文献
15.
The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization 总被引:1,自引:0,他引:1
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments. 相似文献
16.
鼎湖山马尾松径向生长动态与气候因子的关系 总被引:8,自引:2,他引:8
Dendroclimatology method was used to study the relationship between ring index of Pinus massoniana and three climate factors in Dinghushan,South China.The ring indices were negatively correlated with the average tem-perature in June,August and September,and positively correlated with the average temperature of March,whereas no statistically significant correlation was found with monthly precipitation,showing that high summer temperature could limit the radial growth of the species,Meanwhile,tree ring indices showed a strong positive correlation with the relative humidity of April June,August,September,October and November,and also with the average humidity of the whole year,indicating that atmospheric moisture could not fully satisfy the growth of Pinus massoniana despite of abundant rainfall,The possible impact of climate change on the growth of Pinus massoniana was discussed accordingly. 相似文献
17.
末次盛冰期(LGM)以来的增温期和全新世高温期是人类古文化进步的重要时期。黄土高原北部沙漠-黄土过渡带两个自然剖面高分辨率花粉分析结果显示,该区LGM以来为草原植被景观,但优势群落和伴生植物随气候变化而有所不同,温度和降水变化对植被演替有着重要的控制作用。气候干冷时,以耐干旱的草本植物种属为主,群落成分单一,植被盖度低;增温期和高温期,出现少量暖温带乔木植物如胡桃科、栎属等,植被盖度高,群落发育良好。全新世暖期是植被发育良好、植被盖度高的适宜期。本研究为黄土高原地区未来增温下植被响应的分析提供了历史相似型。 相似文献
18.
研究地形过渡带植被的地形效应,边缘效应,及其对纬度、气候变化的响应,将为我国山地生态格局和资源禀赋的深层认知提供地学参考。利用1982—2015年第三代全球库存建模和制图研究归一化植被指数数据集(GIMMS NDVI3g v1)和年均气温、降水等气象数据,分别进行最大值合成、趋势分析、突变分析、变异分析和相关分析,揭示了中国近南北走向的“平原-山地”地形过渡带(简称“地形过渡带”)植被物候的时空变化规律及对气候变化的响应特征。研究表明:(1)“地形过渡带”跨越一年三熟的低纬度地区,到一年两熟的中纬度地区,再到一年一熟的高纬度地区的周期性植被物候特征区;(2)34年间,年际NDVI整体呈增长趋势,其中植被改善区域占58.84%;年内分析表明“地形过渡带”植被生长期(LOS)变化率-3.16 d/纬度;(3)34年间“地形过渡带”的年均气温呈现升高趋势,每10年上升速率为0.098—0.386℃之间;年均降水呈现减少趋势,每10年下降速率为8.29—31.82 mm;(4)34年间NDVI变异系数结果表明,研究区NDVI低波动变化和相对较低波动变化的面积占比达95.52%,说明研究区植被呈... 相似文献
19.
树木年轮资料能够提供区域内过去长时间的环境和气候信息,成为获取过去气候变化信息的重要手段之一。利用采自宝天曼自然保护区的两种针叶树种油松和华山松树木年轮样本分别建立了油松和华山松树轮宽度标准年表PT和PA,并将油松和华山松样本合并建立了联合树种的区域年表(RC)。3种年表分别与不同气候要素(月平均气温、月平均最高气温、月平均最低气温、月降水量)及其不同月份组合进行相关分析,结果表明,油松年表PT和华山松年表PA都包含较高的气候信息,且都和生长季不同月份温度显著负相关和降水显著正相关。其中,油松和华山松都与当年4月和5月降水显著正相关,油松还与当年5月的平均最高温度和上年11月最低温显著负相关,与当年3月平均最低气温显著正相关;华山松与上年10月和当年4月的平均最高温度显著负相关,与上年12月和当年7月平均最低温度显著正相关;联合年表RC包含了单个年表PT和PA共同的气候信息,与当年4—5月降水和3月最低温显著正相关,与当年7月最低温和4、5月最高温显著负相关。不同年表与生长季(3—8月)内气候要素月份组合的相关分析也表明联合年表RC包含和单物种年表PT、PA相似的气候信息并加强了PT、PA受当年生长季气候变化影响的公共信号。可见,同一地区的多树种联合年表一定程度上能体现出区域性树木生长对气候变化响应的生态生理特征,为同地区建成多树种联合年表来探讨当地区域性气候变化提供了可行性的理论基础和一定的参考作用. 相似文献