首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.  相似文献   

2.
3.
4.
5.
6.
A growing number of studies recognize that long non‐coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA‐regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo‐like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11‐50D9.3), whose expression was dramatically down‐regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly‐ADP‐ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib‐induced lncRNA PLK4 could function as a tumour suppressor gene by Yes‐associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib‐induced anti‐tumor effect, and suggest a potential clinical use of talazoparib‐targeted lncRNA PLK4/YAP‐dependent cellular senescence for the treatment of HCC.  相似文献   

7.
8.
Cellular senescence marks the end of the proliferative life span of normal cells in tissue culture and occurs after cells have undergone a certain number of population doublings (PDLs). It is accompanied by alterations in the pattern of gene expression. A specific human embryonic lung diploid fibroblast cell line, 2BS, has been studied as a model of senescence in our laboratory. Here, we report a set of cellular senescence-associated genes identified from suppression subtractive cDNA libraries from senescent and young 2BS cells. They include three novel genes and six previously identified genes of unknown function. The genes whose functions are known belong to various functional pathways that have been reported to change with the onset of senescence. These include three pre-mRNA splicing factors with reduced expression in senescent cells, indicating that the regulation of mRNA splicing is altered during cell senescence. In addition, the expression of the gene TOM1 (target of Myb 1), which has not previously been associated with cellular senescence, is shown to increase in senescent cells, and we demonstrate that the expression of antisense TOM1 gene in 2BS cells can delay the progress of senescence.  相似文献   

9.
10.
11.
12.
13.
Long non-coding RNAs (lncRNAs) have emerged as critical factors for regulating multiple biological processes during organ fibrosis. However, the mechanism of lncRNAs in idiopathic pulmonary fibrosis (IPF) remains incompletely understood. In the present study, two sets of lncRNAs were defined: IPF pathogenic lncRNAs and IPF progression lncRNAs. IPF pathogenic and progression lncRNAs-mRNAs co-expression networks were constructed to identify essential lncRNAs. Network analysis revealed a key lncRNA CTD-2528L19.6, which was up-regulated in early-stage IPF compared to normal lung tissue, and subsequently down-regulated during advanced-stage IPF. CTD-2528L19.6 was indicated to regulate fibroblast activation in IPF progression by mediating the expression of fibrosis related genes LRRC8C, DDIT4, THBS1, S100A8 and TLR7 et al. Further studies showed that silencing of CTD-2528L19.6 increases the expression of Fn1 and Collagen I both at mRNA and protein levels, promoted the transition of fibroblasts into myofibroblasts and accelerated the migration and proliferation of MRC-5 cells. In contrast, CTD-2528L19.6 overexpression alleviated fibroblast activation in MRC-5 cells induced by TGF-β1. LncRNA CTD-2528L19.6 inhibited fibroblast activation through regulating the expression of LRRC8C in vitro assays. Our results suggest that CTD-2528L19.6 may prevent the progression of IPF from early-stage and alleviate fibroblast activation during the advanced-stage of IPF. Thus, exploring the regulatory effect of lncRNA CTD-2528L19.6 may provide new sights for the prevention and treatment of IPF.Subject terms: Mechanisms of disease, Non-coding RNAs  相似文献   

14.
15.
人类基因组转录本长度>200 nt(核苷酸)、不编码蛋白质的RNA分子为长链非编码RNA(long non-coding RNA,lncRNA)。lncRNA可在多个层面调节基因表达,其功能失调与包括肿瘤在内的很多人类疾病密切相关。本文概述lncRNA的种类、功能与疾病的关系,讨论基于lncRNA基因编辑、干细胞修饰及其与miRNA、蛋白质相互作用等的治疗潜能。  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号