首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Azores Islands, two Euphrasia L. (Orobanchaceae) endemic species are recognized: Euphrasia azorica H.C.Watson, an annual herb, in Flores and Corvo, and Euphrasia grandiflora Hochst. ex Seub., a semi-shrub, in Pico, São Jorge and Terceira. Both species are highly endangered and protected by the Bern Convention and Habitats Directive. A population genetics study was conducted with new microsatellite primer pairs in 159 individuals of E. azorica and E. grandifolia, sampled from populations in Flores, Corvo, Pico and São Jorge. Allele sizing suggested that E. azorica is a diploid while E. grandiflora is a tetraploid. Euphrasia grandiflora revealed higher genetic diversity then E. azorica. The E. grandiflora population of Morro Pelado in São Jorge, displayed higher genetic diversity when compared with all others, while the E. azorica population of Madeira Seca in Corvo, showed the lowest. Private and less common bands were also overall higher in E. grandiflora populations. Population genetic structure analysis confirmed a distinctiveness between the two Azorean endemic Euphrasia, in addition to island-specific genetic patterns in E. azorica. The genetic structure obtained for E. grandiflora was complex with the populations of Cabeço do Mistério in Pico Island and of Pico da Esperança in São Jorge sharing the same genetic group, while a putative spatial barrier to gene flow was still retrieved between both islands. Although some populations of both species might benefit from propagation actions, studies are needed on plant host species and translocations between islands or between some populations of a same island should be avoided, due to the occurrence of putative ESUs. Eradication of invasive species and control of grazing will be fundamental to promote in situ restauration.  相似文献   

2.
Organisms living in habitats characterized by a marked seasonal temperature variation often have a greater thermal tolerance than those living in more stable habitats. To determine the extent to which this hypothesis applies to reef corals, we compared thermal tolerance of the early life stages of five scleractinian species from three locations spanning 17° of latitude along the east coast of Australia. Embryos were exposed to an 8 °C temperature range around the local ambient temperature at the time of spawning. Upper thermal thresholds, defined as the temperature treatment at which the proportion of abnormal embryos or median life span was significantly different to ambient controls, varied predictably among locations. At Lizard Island, the northern-most site with the least annual variation in temperature, the proportion of abnormal embryos increased and life span decreased 2 °C above ambient in the two species tested. At two southern sites, One Tree Island and Lord Howe Island, where annual temperature variation was greater, upper temperature thresholds were generally 4 °C or greater above ambient for both variables in the four species tested. The absolute upper thermal threshold temperature also varied among locations: 30 °C at Lizard Island; 28 °C at One Tree Island; 26 °C at Lord Howe Island. These results support previous work on adult corals demonstrating predictable differences in upper thermal thresholds with latitude. With projected ocean warming, these temperature thresholds will be exceeded in northern locations in the near future, adding to a growing body of evidence indicating that climate change is likely to be more detrimental to low latitude than high latitude corals.  相似文献   

3.
  1. Tropical ectotherm species tend to have narrower physiological limits than species from temperate areas. As a consequence, tropical species are considered highly vulnerable to climate change since minor temperature increases can push them beyond their physiological thermal tolerance. Differences in physiological tolerances can also be seen at finer evolutionary scales, such as among populations of ectotherm species along elevation gradients, highlighting the physiological sensitivity of such organisms.
  2. Here, we analyze the influence of elevation and bioclimatic domains, defined by temperature and precipitation, on thermal sensitivities of a terrestrial direct‐developing frog (Craugastor loki) in a tropical gradient. We address the following questions: (a) Does preferred temperature vary with elevation and among bioclimatic domains? (b) Do thermal tolerance limits, that is, critical thermal maximum and critical thermal minimum vary with elevation and bioclimatic domains? and (c) Are populations from high elevations more vulnerable to climate warming?
  3. We found that along an elevation gradient body temperature decreases as environmental temperature increases. The preferred temperature tends to moderately increase with elevation within the sampled bioclimatic domains. Our results indicate that the ideal thermal landscape for this species is located at midelevations, where the thermal accuracy (db) and thermal quality of the environment (de) are suitable. The critical thermal maximum is variable across elevations and among the bioclimatic domains, decreasing as elevation increases. Conversely, the critical thermal minimum is not as variable as the critical thermal maximum.
  4. Populations from the lowlands may be more vulnerable to future increases in temperature. We highlight that the critical thermal maximum is related to high temperatures exhibited across the elevation gradient and within each bioclimatic domain; therefore, it is a response to high environmental temperatures.
  相似文献   

4.
Prunus azorica is an endangered tree endemic to the Azores Archipelago, considered as a top priority species for conservation. Although propagation measures have been studied in detail, and a broad phylogeographic study on P. lusitanica was recently published, a detailed population genetics study devoted to Azorean taxon was lacking. To determine extant patterns of population genetic structure in P. azorica, we analysed eight populations from the five Azorean islands where the species presently occurs and the only extant individual from Flores Island. We also included samples of P. lusitanica subsp. hixa from the Canary Islands and Madeira, and of P. lusitanica subsp. lusitanica from mainland Portugal. Genotyping was undertaken for eight nuclear microsatellite polymorphic loci specifically isolated for P. azorica. Accessions of the different geographic regions were used to sequence ITS and trnL DNA regions. Regarding SSRs, the number of alleles ranged from 5 to 37 (mean = 12.6) per locus and from 2 to 64 per population (mean = 24). Our analysis showed a clear separation between samples from the Azores and those from other regions. Overall, São Miguel populations seemed to encompass the majority of the variability found within the archipelago. Regarding the Azorean populations only, the highest percentage of genetic variation was found within populations (92 %). Still, about 7 % of the variation was found among populations within islands. Expected heterozygosity ranged from values near 0 in the most depauperate populations up to 0.18. With a few exceptions, the level of differentiation between Azorean populations was generally low and gene flow was clearly above 1. Analysis of ITS sequences also detected differences between the Azores and the remaining regions but the trnL region did not reveal any variation. The genetic identity of P. azorica was recognised and thus should be preserved; however, the present results suggest that the Azorean taxon should be reinstated at the subspecies level.  相似文献   

5.
Horizontally-transmitted foliar endophytic fungi can moderate plant tolerance to abiotic and biotic stress. Previous studies have found correlations between climate and endophyte beta diversity, but were unable to clearly separate drivers related to long-term climate, annual weather, and host plants. To address this, we characterized endophyte communities in the perennial C4 grass, Panicum hallii, across a precipitation gradient in central Texas over 3 years. A total of 65 unique leaf endophytes were isolated and identified based on ITS and LSU regions of rDNA. Mean annual rainfall and temperature were the primary drivers of endophyte richness and community composition, followed by annual weather conditions. In contrast, little explanatory value was provided by plant host traits, vegetation structure, or spatial factors. The importance of historical climate and annual weather in endophyte distributions suggests that species sort by environment and are likely to be affected by future climate change.  相似文献   

6.
Variation in climate has been demonstrated to be a powerful driver of selection and local adaptation among plant populations. Variation in functional traits among populations can also be indicative of the drivers of local adaptation. However, it is not clear to what extent species exhibit consistent patterns of local adaptation as revealed by common, heritable trait–environment relationships among populations. To address this, we conducted a meta-analysis of common garden studies of grass populations to quantify the degree of heritability of several commonly measured functional traits, and whether demonstrated heritability was driven by climate. We found that leaf size, specific leaf area (SLA) and total biomass all displayed strong broad-sense of heritability. Both leaf area and SLA decreased significantly with increasing temperature seasonality among populations within species, while total biomass increased with increasing annual and dry season precipitation, and decreased with increasing precipitation seasonality. These results indicate similar, consistent drivers of local adaptation among species of grasses. Further information on trait–environment relationships within species could greatly improve our ability to predict broad scale patterns in functional diversity across multiple levels of ecological organization. Expanding the range of traits and regions incorporated in common garden research, in the present case by incorporating root traits and Southern Hemisphere taxa, will provide even greater benefits to the fields of restoration, conservation, and global change ecology.  相似文献   

7.

Key message

To disentangle complex drivers of Myricaria elegans growth in arid Himalaya, we combined tree-ring analysis with detailed dendrometer records. We found that the combination of winter frost, summer floods, and strong summer diurnal temperature fluctuations control annual and intra-annual growth dynamics. The relative importance of these drivers is, however, changing with ongoing climate change.

Abstract

High-mountain areas are among the most sensitive environments to climate change. Understanding how different organisms cope with ongoing climate change is now a major topic in the ecology of cold environments. Here, we investigate climate drivers of the annual and intra-annual growth dynamics of Myricaria elegans, a 3–6 m tall tree/shrub, in a high-elevation cold desert in Ladakh, a rapidly warming region in the NW Himalayas. As Myricaria forms narrow stands around glacier streams surrounded by the desert, we hypothesized that its growth between 3800 and 4100 m will be primarily limited by low temperatures and summer floods. We found that warmer and less snowy conditions in April and May enhance earlywood production. Latewood formation is mostly driven by the June–July temperatures (T). The positive effect of warmer summers on both annual and intra-annual growth is related to fluctuating daily T (from +30 to 0 °C). In particular, dendrometer measurements over a 2-year period showed that net daily growth increments increased when the summer night T remained above 6 °C. While high night T during generally cold desert nights promoted growth, high daytime T caused water stress and growth inhibition. The growth–temperature dependency has gradually weakened due to accelerated warming since the 1990s. In addition, positive latewood responses to high March precipitation during the colder 1960s–1980s have become negative during the warmer 1990s–2000s, reflecting an intensification of summer floods. Latewood width increased while earlywood width decreased from the 1990s, indicating a prolonged growing season and a higher risk of drought-induced embolism in earlywood vessels. Due to a multiplicity of environmental drivers including winter frost, intensified floods and strong summer diurnal T fluctuations, Myricaria growth is not controlled by a single climate parameter. Similar results are increasingly reported from other Himalayan treelines, showing that ongoing climate change will trigger complex and probably spatially variable responses in tree growth. Our study showed that these complex climatic signals can be disentangled by a combination of long-term data from tree-rings with detailed, but short-term, records from dendrometers.
  相似文献   

8.
In the tropical Andes climate change is expected to increase temperatures and change precipitation patterns. To overcome the lack of systematic weather records that limits the performance of climate models in this region, the use of the environmental information contained in tree rings from tropical Andean species have been found useful to reconstruct spatio-temporal climate variability. Because classical dendrochronology based on ring-width patterns is often challenging in the tropics, alternative approaches such as Quantitative Wood Anatomy (QWA) based on the measurement and quantification of anatomical traits within tree rings can be a significant advance in the field. Here we assess the dendrochronological potential of Polylepis microphylla and its climate sensitivity by using i) classic dendrochronological methods to generate the first Tree-ring Width (TRW) chronology for this tree species spanning from 1965 to 2018; ii) radiocarbon (¹⁴C) analyses as an independent validation method to assess the annual periodicity of the tree growth layers; and iii) QWA to generate tree-ring annual records of the number (VN) and size (VS) of vessels to investigate the climate sensitivity of these anatomical traits. The annual periodicity in P. microphylla radial growth was confirmed by both dendrochronological and ¹⁴C analyses. We found that VN and VS are promising new proxies to reconstruct climate variability in this region and that they provide different information than TRW. While TRW provides information at inter-annual resolution (i.e., year-to-year variability), VN and VS generated with sectorial QWA provide intra-annual resolution for each stage of the growing process. The TRW and the anatomical traits (i.e., VN and VS) showed strong positive correlation with maximum temperature for different periods of the growing season: while VS is higher with warmer conditions prior to the growing season onset, tree-rings are wider and present higher number of vessels when warmer conditions occur during the current growing season. Our findings pointed out the suitability of P. microphylla for dendrochronological studies and may suggest a good performance of this species under the significant warming expected according to future projections for the tropical Andes.  相似文献   

9.
Identifying the environmental drivers of the global distribution of succulent plants using the Crassulacean acid metabolism pathway of photosynthesis has previously been investigated through ensemble‐modeling of species delimiting the realized niche of the natural succulent biome. An alternative approach, which may provide further insight into the fundamental niche of succulent plants in the absence of dispersal limitation, is to model the distribution of selected species that are globally widespread and have become naturalized far beyond their native habitats. This could be of interest, for example, in defining areas that may be suitable for cultivation of alternative crops resilient to future climate change. We therefore explored the performance of climate‐only species distribution models (SDMs) in predicting the drivers and distribution of two widespread CAM plants, Opuntia ficusindica and Euphorbia tirucalli. Using two different algorithms and five predictor sets, we created distribution models for these exemplar species and produced an updated map of global inter‐annual rainfall predictability. No single predictor set produced markedly more accurate models, with the basic bioclim‐only predictor set marginally out‐performing combinations with additional predictors. Minimum temperature of the coldest month was the single most important variable in determining spatial distribution, but additional predictors such as precipitation and inter‐annual precipitation variability were also important in explaining the differences in spatial predictions between SDMs. When compared against previous projections, an a posteriori approach correctly does not predict distributions in areas of ecophysiological tolerance yet known absence (e.g., due to biotic competition). An updated map of inter‐annual rainfall predictability has successfully identified regions known to be depauperate in succulent plants. High model performance metrics suggest that the majority of potentially suitable regions for these species are predicted by these models with a limited number of climate predictors, and there is no benefit in expanding model complexity and increasing the potential for overfitting.  相似文献   

10.
Temperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non‐native forest pest Lymantria dispar dispar (L.), we conducted a simulated reciprocal transplant experiment in environmental chambers using six custom temperature regimes representing contemporary conditions near the southern and northern extremes of the US invasion front and projections under two climate change scenarios for the year 2050. Larval growth and development rates increased with climate warming compared with current thermal regimes and tended to be greater for individuals originally sourced from southern rather than northern populations. Although increases in growth and development rates with warming varied somewhat by region of the source population, there was not strong evidence of local adaptation, southern populations tended to outperform those from northern populations in all thermal regimes. Our study demonstrates the utility of simulating thermal regimes under climate change in environmental chambers and emphasizes how the impacts from future increases in temperature can vary based on geographic differences in climate‐related performance among populations.  相似文献   

11.
There are multiple paths via which environmental variation can impact herbivore ecology and this makes the identification of drivers challenging. Researchers have used diverse approaches to describe the association between environmental variation and ecology, including local weather, large-scale patterns of climate, and satellite imagery reflecting plant productivity and phenology. However, it is unclear to what extent it is possible to find a single measure that captures climatic effects over broad spatial scales. There may, in fact, be no a priori reason to expect populations of the same species living in different areas to respond in the same way to climate as their population may experience limiting factors at different times of the year, and the forms of regulation may differ among populations. Here, we examine whether the same environmental indices [seasonal Real Bioclimatic Index (RBI), seasonal Normalized Difference Vegetation Index (NDVI) and winter North Atlantic Oscillation (NAO)] influence body size in different populations of a large ungulate living in Mediterranean Spain, Western Scotland and Norway. We found substantial differences in the pattern of weight change over time in adult female red deer among study areas as well as different environmental drivers associated with variation in weight. The lack of general patterns for a given species at a continental scale suggest that detailed knowledge regarding the way climate affects local populations is often necessary to successfully predict climate impact. We caution against extrapolation of results from localized climate–population studies to broad spatial scales.  相似文献   

12.
Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long‐term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long‐term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species‐interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.  相似文献   

13.
The botanical family Lauraceae is ecologically and physiognomically very important in neotropical forests. It is one of the most frequent and distributed family both in number of individuals and species. Despite of this, we have noticed that a very few Lauraceae species have been considered in dendrochronological investigations. In order to analyze the potential of Lauraceae species in dendrochronology and to facilitate future studies we: (1) reviewed the literature on wood anatomy, cambial activity, tree growth and dendrochronology and compiled a list of species’ tree-ring features throughout the Neotropics; (2) Investigated wood anatomy, growth synchronism and climate-growth relationship using dendrochronological standard techniques in 14 species from subtropical forests of southern Brazil. Our review pointed out that the majority of Lauraceae forms distinct tree-rings in several biomes and climates in the Neotropics. Seasonal growth pattern related to water stress and to seasonal air temperature were identified in Amazonia and in subtropical high elevation sites, respectively. Time series of tree-ring width of Lauraceae species were successfully cross-dated and were already used in reconstruction of fire and vegetation dynamics. Our own dendrochronological investigations brought to light that all the 14 studied species form distinct tree-rings in seasonal or even rainforests. By analyzing time series of tree-ring width we found the same growth tendency within trees of Cinnamomum amoenum and Ocotea pulchella. Moreover, year-to-year variation in the growth time-series was linked to climate variations of temperature and precipitation, showing growth decreases when summer water stress occur. We evinced Lauraceae has distinct, synchronic and climate-sensitive tree-rings. Therefore, since Lauraceae has wide distribution and high frequency in the Neotropics and since many species become centenary, we strongly encourage the use of Lauraceae’s tree-rings in autoecology, climatology and on the reconstruction of vegetation and disturbance dynamics.  相似文献   

14.
《Journal of Asia》2020,23(2):260-268
Eggplant (Solanum melongena L.) is the leading vegetable grown and consumed in the Philippines, and the eggplant leafhopper is one of its most important insect pests. Nine local populations of leafhopper infesting eggplants were collected from major eggplant growing areas in Luzon Island to determine if these populations are constituted singly or by different species and to assess the level of variability among them. Morphological analysis of the adult male abdominal and genital traits and partial mitochondrial COI gene sequence identified the eggplant leafhopper populations in Luzon Island as belonging to Amrasca (=Sundapteryx) biguttula (Ishida) (Hemiptera:Cicadelliae). Observed male specimens exhibited modifications in the pregenital abdominal tergites VII and VIII that were previously reported to not be found in other Amrasca species. Principal Component Analysis of four morphometric genital traits revealed high similarity among the leafhopper populations regardless of eggplant production areas. Partial COI sequence analysis idenfitied 11 sequence variants (haplotypes), with one predominant haplotype. Overall, the leafhopper populations from Luzon Island exhibited moderate haplotype diversity and low nucleotide diversity, indicating low genetic diversity. Topologies from a maximum likelihood tree indicate all eleven haplotypes cluster in a single clade with other A. biguttula infesting cotton and potato in India, but the Philippine population forms a separate subgroup although with weak bootstrap support. Further analysis with the Generalized Mixed Yule Coalescent (GMYC) method classified the different haplotypes into a single GMYC entity.  相似文献   

15.
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions.  相似文献   

16.
《Journal of Asia》2019,22(3):666-674
Climate change and land-use change are the most powerful drivers for the invasion of alien species. To understand the integrated effects of these two drivers on pest invasion risk in the future, this study assessed how they impact the invasion risk of Thrips palmi Karny, which is the most serious invasive species in the Korean peninsula. The potential distribution of T. palmi was projected with a MaxEnt model for current and future climate change scenarios (RCP 4.5 and 8.5) based on occurrence records. The potential distribution extends to the north over time, except the eastern high mountainous area, for both RCPs in 2075. The MaxEnt outputs were filtered with agricultural area using data from three land-use change scenarios derived from the Shared Socio-economic Pathways (SSPs), because T. palmi populations can only be sustained in agricultural areas. The potential risk of T. palmi, based on the potential distribution probability in the future agricultural area, increased over time under all RCPs-SSPs combinations. The total area of T. palmi occurrence increased under RCPs-SSP1 and -SSP2 but decreased under RCPs-SSP3, due to agricultural areas being converted to urban areas. In conclusion, based on future climate change scenarios, T. palmi could be distributed throughout the Korean peninsula in the future. The invasion risk in agricultural areas will increase substantially; thus, intensive control measures for T. palmi are required in the future. Our research suggests that using both climate change and land-use change in pest risk mapping study can provide informative data for management strategy.  相似文献   

17.
We asked the following questions regarding gap dynamics and regeneration strategies in Juniperus-Laurus forests: How important are gaps for the maintenance of tree diversity? What are the regeneration strategies of the tree species? Thirty canopy openings were randomly selected in the forest and in each the expanded gap area was delimited. Inside expanded gaps the distinction was made between gap and transition zone. In the 30 expanded gaps a plot, enclosing the gap and transition zone, was placed. In order to evaluate the differences in regeneration and size structure of tree species between forest and expanded gaps, 30 control plots were also delimited in the forest, near each expanded gap. In the 60 plots the number of seedlings, saplings, basal sprouts and adults of tree species were registered. Canopy height and width of adult individuals were also measured. The areas of the 30 gaps and expanded gaps were measured and the gap-maker identified. Juniperus-Laurus forests have a gap dynamic associated with small scale disturbances that cause the death, on average, of two trees, mainly of Juniperus brevifolia. Gap and expanded gap average dimensions are 8 and 25 m2, respectively. Gaps are of major importance for the maintenance of tree diversity since they are fundamental for the regeneration of all species, with the exception of Ilex azorica. Three types of regeneration behaviour and five regeneration strategies were identified: (1) Juniperus brevifolia and Erica azorica are pioneer species that regenerate in gaps from seedlings recruited after gap formation. However, Juniperus brevifolia is a pioneer persistent species capable of maintaining it self in the forest due to a high longevity and biomass; (2) Laurus azorica and Frangula azorica are primary species that regenerate in gaps from seedlings or saplings recruited before gap formation but Laurus azorica is able to maintain it self in the forest through asexual regeneration thus being considered a primary persistent species; (3) Ilex azorica is a mature species that regenerates in the forest.  相似文献   

18.
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.  相似文献   

19.
Ecological constraints on independent breeding are recognised as major drivers of cooperative breeding across diverse lineages. How the prevalence and degree of cooperative breeding relates to ecological variation remains unresolved. Using a large data set of cooperative nesting in Polistes wasps we demonstrate that different aspects of cooperative breeding are likely to be driven by different aspects of climate. Whether or not a species forms cooperative groups is associated with greater short‐term temperature fluctuations. In contrast, the number of cooperative foundresses increases in more benign environments with warmer, wetter conditions. The same data set reveals that intraspecific responses to climate variation do not mirror genus‐wide trends and instead are highly heterogeneous among species. Collectively these data suggest that the ecological drivers that lead to the origin or loss of cooperation are different from those that influence the extent of its expression within populations.  相似文献   

20.
Anthropogenic disturbance in natural ecosystems reduces the number of species in biological communities and homogenizes their composition across different regions. Climate is one of the main abiotic determinants of species distributions and different factors were proposed as the main climatic drivers. Here we explored the role of regional climate on the local response of dung beetle assemblages to the replacement of native forest by cattle pastures in South America by simultaneously contrasting three climatic hypotheses: energy, seasonality and heterogeneity. We compiled a database by searching published studies comparing dung beetle richness and composition between both native forests and cattle pastures. We calculated the proportional difference in species richness and composition between habitat types. As explanatory variables, we used seven abiotic variables grouped into the three climatic hypotheses. Energy/Productivity: mean annual temperature (°C/year) and total annual precipitation (mm/year). Seasonality: annual thermal amplitude (°C/year), the average coefficient of variation of monthly precipitation and the coefficient of average monthly variation in temperature. Heterogeneity: coefficient of variation of mean annual temperature, coefficient of variation of mean annual precipitation. Using regression analyses and a model selection procedure, we found differences in species richness between native forests and cattle pastures were explained by the coefficient of variation of mean annual precipitation, whereas changes in species composition were explained by total annual precipitation and the coefficient of variation of mean annual precipitation. The response of dung beetle assemblages to livestock grazing in South American forests was associated with precipitation variation. The heterogeneity hypothesis better explained changes in species richness following forest replacement by cattle pastures, while both energy/productivity and heterogeneity hypotheses explained the changes in species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号