共查询到20条相似文献,搜索用时 15 毫秒
1.
Kellie N. Bingham Megan D. Lee Jason S. Rawlings 《Journal of visualized experiments : JoVE》2015,(106)
During a proper immune response, quiescent T cells become activated upon antigen presentation to their antigen-specific T cell receptor. This leads to clonal proliferation of only those T cells that bear a receptor that recognizes the antigen. Chromatin decondensation is a hallmark of T cell activation and is required for T cells to acquire the ability to proliferate after antigen engagement. This change in chromatin condensation can be detected using antibodies raised against histone proteins. These antibodies cannot bind to their epitopes in naïve T cells as well as they can in activated T cells. We describe how to simultaneously stain T cell-specific surface markers, track viability with a fixable dead cell stain, and measure chromatin status via intracellular staining of Histone H3 proteins. Stained cells are analyzed by flow cytometry and chromatin condensation status is measured as the mean fluorescence intensity (MFI) of the Histone H3 stain. Chromatin decondensation during T cell activation is demonstrated as an increase in the MFI 相似文献
2.
Vallenius T Scharm B Vesikansa A Luukko K Schäfer R Mäkelä TP 《Experimental cell research》2004,293(1):117-128
ALP, CLP-36 and RIL form the ALP subfamily of PDZ-LIM proteins. ALP has been implicated in sarcomere function in muscle cells in association with alpha-actinin. The closely related CLP-36 is predominantly expressed in nonmuscle cells, where it localizes to actin stress fibers also in association with alpha-actinin. Here we have studied the expression and functions of RIL originally identified as a gene downregulated in H-ras-transformed cells. RIL was mostly expressed in nonmuscle epithelial cells with a pattern distinct from that of CLP-36. RIL protein was found to localize to actin stress fibers in nonmuscle cells similarly to CLP-36. However, RIL expression led to partially abnormal actin filaments showing thick irregular stress fibers not seen with CLP-36. Furthermore, live cell imaging demonstrated altered stress fiber dynamics with rapid formation of new fibers and frequent collapse of thick irregular fibers in EGFP-RIL-expressing cells. These effects may be mediated through the association of RIL with alpha-actinin, as RIL was found to associate with alpha-actinin via its PDZ domain, and RIL enhanced the ability of alpha-actinin to cosediment with actin filaments. These results implicate the RIL PDZ-LIM protein as a regulator of actin stress fiber turnover. 相似文献
3.
Matsumura S Shinoda K Yamada M Yokojima S Inoue M Ohnishi T Shimada T Kikuchi K Masui D Hashimoto S Sato M Ito A Akioka M Takagi S Nakamura Y Nemoto K Hasegawa Y Takamoto H Inoue H Nakamura S Nabeshima Y Teplow DB Kinjo M Hoshi M 《The Journal of biological chemistry》2011,286(13):11555-11562
Nonfibrillar assemblies of amyloid β-protein (Aβ) are considered to play primary roles in Alzheimer disease (AD). Elucidating the assembly pathways of these specific aggregates is essential for understanding disease pathogenesis and developing knowledge-based therapies. However, these assemblies cannot be monitored in vivo, and there has been no reliable in vitro monitoring method at low protein concentration. We have developed a highly sensitive in vitro monitoring method using fluorescence correlation spectroscopy (FCS) combined with transmission electron microscopy (TEM) and toxicity assays. Using Aβ labeled at the N terminus or Lys(16), we uncovered two distinct assembly pathways. One leads to highly toxic 10-15-nm spherical Aβ assemblies, termed amylospheroids (ASPDs). The other leads to fibrils. The first step in ASPD formation is trimerization. ASPDs of ~330 kDa in mass form from these trimers after 5 h of slow rotation. Up to at least 24 h, ASPDs remain the dominant structures in assembly reactions. Neurotoxicity studies reveal that the most toxic ASPDs are ~128 kDa (~32-mers). In contrast, fibrillogenesis begins with dimer formation and then proceeds to formation of 15-40-nm spherical intermediates, from which fibrils originate after 15 h. Unlike ASPD formation, the Lys(16)-labeled peptide disturbed fibril formation because the Aβ(16-20) region is critical for this final step. These differences in the assembly pathways clearly indicated that ASPDs are not fibril precursors. The method we have developed should facilitate identifying Aβ assembly steps at which inhibition may be beneficial. 相似文献
4.
Advances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy. These assays potentially generate large numbers of images of fluorescent biomarkers, which enabled by accompanying proprietary software packages, allows for multi-parametric measurements per cell. However, the relatively high capital costs and overspecialization of many of these devices have prevented their accessibility to many investigators.Described here is a universally applicable workflow for the quantification of multiple fluorescent marker intensities from specific subcellular regions of individual cells suitable for use with images from most fluorescent microscopes. Key to this workflow is the implementation of the freely available Cell Profiler software1 to distinguish individual cells in these images, segment them into defined subcellular regions and deliver fluorescence marker intensity values specific to these regions. The extraction of individual cell intensity values from image data is the central purpose of this workflow and will be illustrated with the analysis of control data from a siRNA screen for G1 checkpoint regulators in adherent human cells. However, the workflow presented here can be applied to analysis of data from other means of cell perturbation (e.g., compound screens) and other forms of fluorescence based cellular markers and thus should be useful for a wide range of laboratories. 相似文献
5.
The thymus is a vital organ for T lymphocyte development. Of thymic stromal cells, thymic epithelial cells (TECs) are particularly crucial at multiple stages of T cell development: T cell commitment, positive selection and negative selection. However, the function of TECs in the thymus remains incompletely understood. In the article, we provide a method to isolate TEC subsets from fresh mouse thymus using a combination of mechanical disruption and enzymatic digestion. The method allows thymic stromal cells and thymocytes to be efficiently released from cell-cell and cell-extracellular matrix connections and to form a single-cell suspension. Using the isolated cells, multiparameter flow cytometry can be applied to identification and characterization of TECs and dendritic cells. Because TECs are a rare cell population in the thymus, we also describe an effective way to enrich and purify TECs by depleting thymocytes, the most abundant cell type in the thymus. Following the enrichment, cell sorting time can be decreased so that loss of cell viability can be minimized during purification of TECs. Purified cells are suitable for various downstream analyses like Real Time-PCR, Western blot and gene expression profiling. The protocol will promote research of TEC function and as well as the development of in vitro T cell reconstitution. 相似文献
6.
7.
Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. 相似文献
8.
Jens Kieckbusch Louise M. Gaynor Francesco Colucci 《Journal of visualized experiments : JoVE》2015,(106)
The placenta mediates the exchange of factors such as gases and nutrients between mother and fetus and has specific demands for supply of blood from the maternal circulation. The maternal uterine vasculature needs to adapt to this temporary demand and the success of this arterial remodeling process has implications for fetal growth. Cells of the maternal immune system, especially natural killer (NK) cells, play a critical role in this process. Here we describe a method to assess the degree of remodeling of maternal spiral arteries during mouse pregnancy. Hematoxylin and eosin-stained tissue sections are scanned and the size of the vessels analysed. As a complementary validation method, we also present a qualitative assessment for the success of the remodeling process by immunohistochemical detection of smooth muscle actin (SMA), which normally disappears from within the arterial vascular media at mid-gestation. Together, these methods enable determination of an important parameter of the pregnancy phenotype. These results can be combined with other endpoints of mouse pregnancy to provide insight into the mechanisms underlying pregnancy-related complications. 相似文献
9.
Y. Maurice Morillon II Fatima Manzoor Bo Wang Roland Tisch 《Journal of visualized experiments : JoVE》2015,(99)
The mechanisms that regulate the efficacy of thymic selection remain ill-defined. The method presented here allows in vivo analyses of the development and selection of T cells specific for self and foreign antigens. The approach entails implantation of thymic grafts derived from various aged mice into immunodeficient scid recipients. Over a relatively short period of time the recipients are fully reconstituted with T cells derived from the implanted thymus graft. Only thymocytes seeding the thymus at the time of isolation undergo selection and develop into mature T cells. As such, changes in the nature and specificity of the engrafted T cells as a function of age-dependent thymic events can be assessed. Although technical expertise is required for successful thymic transplantation, this method provides a unique strategy to study in vivo a wide range of pathologies that are due to or a result of aberrant thymic function and/or homeostasis. 相似文献
10.
Pauline Hamon Mathieu Paul Rodero Christophe Combadière Alexandre Boissonnas 《Journal of visualized experiments : JoVE》2015,(96)
Real time multiphoton imaging provides a great opportunity to study cell trafficking and cell-to-cell interactions in their physiological 3-dimensionnal environment. Biological activities of immune cells mainly rely on their motility capacities. Blood monocytes have short half-life in the bloodstream; they originate in the bone marrow and are constitutively released from it. In inflammatory condition, this process is enhanced, leading to blood monocytosis and subsequent infiltration of the peripheral inflammatory tissues. Identifying the biomechanical events controlling monocyte trafficking from the bone marrow towards the vascular network is an important step to understand monocyte physiopathological relevance. We performed in vivo time-lapse imaging by two-photon microscopy of the skull bone marrow of the Csf1r-Gal4VP16/UAS-ECFP (MacBlue) mouse. The MacBlue mouse expresses the fluorescent reporters enhanced cyan fluorescent protein (ECFP) under the control of a myeloid specific promoter 1, in combination with vascular network labelling. We describe how this approach enables the tracking of individual medullar monocytes in real time to further quantify the migratory behaviour within the bone marrow parenchyma and the vasculature, as well as cell-to-cell interactions. This approach provides novel insights into the biology of the bone marrow monocyte subsets and allows to further address how these cells can be influenced in specific pathological conditions. 相似文献
11.
Since the discovery of Green Fluorescent Protein (GFP), there has been a revolutionary change in the use of live-cell imaging as a tool for understanding fundamental biological mechanisms. Striking progress has been particularly evident in Drosophila, whose extensive toolkit of mutants and transgenic lines provides a convenient model to study evolutionarily-conserved developmental and cell biological mechanisms. We are interested in understanding the mechanisms that control cell fate specification in the adult peripheral nervous system (PNS) in Drosophila. Bristles that cover the head, thorax, abdomen, legs and wings of the adult fly are individual mechanosensory organs, and have been studied as a model system for understanding mechanisms of Notch-dependent cell fate decisions. Sensory organ precursor (SOP) cells of the microchaetes (or small bristles), are distributed throughout the epithelium of the pupal thorax, and are specified during the first 12 hours after the onset of pupariation. After specification, the SOP cells begin to divide, segregating the cell fate determinant Numb to one daughter cell during mitosis. Numb functions as a cell-autonomous inhibitor of the Notch signaling pathway.Here, we show a method to follow protein dynamics in SOP cell and its progeny within the intact pupal thorax using a combination of tissue-specific Gal4 drivers and GFP-tagged fusion proteins 1,2.This technique has the advantage over fixed tissue or cultured explants because it allows us to follow the entire development of an organ from specification of the neural precursor to growth and terminal differentiation of the organ. We can therefore directly correlate changes in cell behavior to changes in terminal differentiation. Moreover, we can combine the live imaging technique with mosaic analysis with a repressible cell marker (MARCM) system to assess the dynamics of tagged proteins in mitotic SOPs under mutant or wildtype conditions. Using this technique, we and others have revealed novel insights into regulation of asymmetric cell division and the control of Notch signaling activation in SOP cells (examples include references 1-6,7 ,8). 相似文献
12.
Eva C. Arnspang Jennifer S. Koffman Saw Marlar Paul W. Wiseman Lene N. Nejsum 《Journal of visualized experiments : JoVE》2014,(87)
Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely available code to measure diffusion coefficients of proteins. kICS calculates a time correlation function from a fluorescence microscopy image stack after Fourier transformation of each image to reciprocal (k-) space. Subsequently, circular averaging, natural logarithm transform and linear fits to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS.First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope. Then, a region of interest (ROI) avoiding intracellular organelles, moving vesicles or protruding membrane regions is selected. The ROI stack is imported into a freely available code and several defined parameters (see Method section) are set for kICS analysis. The program then generates a "slope of slopes" plot from the k-space time correlation functions, and the diffusion coefficient is calculated from the slope of the plot. Below is a step-by-step kICS procedure to measure the diffusion coefficient of a membrane protein using the renal water channel aquaporin-3 tagged with EGFP as a canonical example. 相似文献
13.
Jacqueline M. Nolting Christine M. Szablewski Jody L. Edwards Sarah W. Nelson Andrew S. Bowman 《Journal of visualized experiments : JoVE》2015,(106)
Surveillance for influenza A viruses in swine is critical to human and animal health because influenza A virus rapidly evolves in swine populations and new strains are continually emerging. Swine are able to be infected by diverse lineages of influenza A virus making them important hosts for the emergence and maintenance of novel influenza A virus strains. Sampling pigs in diverse settings such as commercial swine farms, agricultural fairs, and live animal markets is important to provide a comprehensive view of currently circulating IAV strains. The current gold-standard ante-mortem sampling technique (i.e. collection of nasal swabs) is labor intensive because it requires physical restraint of the pigs. Nasal wipes involve rubbing a piece of fabric across the snout of the pig with minimal to no restraint of the animal. The nasal wipe procedure is simple to perform and does not require personnel with professional veterinary or animal handling training. While slightly less sensitive than nasal swabs, virus detection and isolation rates are adequate to make nasal wipes a viable alternative for sampling individual pigs when low stress sampling methods are required. The proceeding protocol outlines the steps needed to collect a viable nasal wipe from an individual pig. 相似文献
14.
Adaptive immunity is regulated by dynamic interactions between T cells and antigen presenting cells (''APCs'') referred to as ''immunological synapses''. Within these intimate cell-cell interfaces discrete sub-cellular clusters of MHC/Ag-TCR, F-actin, adhesion and signaling molecules form and remodel rapidly. These dynamics are thought to be critical determinants of both the efficiency and quality of the immune responses that develop and therefore of protective versus pathologic immunity. Current understanding of immunological synapses with physiologic APCs is limited by the inadequacy of the obtainable imaging resolution. Though artificial substrate models (e.g., planar lipid bilayers) offer excellent resolution and have been extremely valuable tools, they are inherently non-physiologic and oversimplified. Vascular and lymphatic endothelial cells have emerged as an important peripheral tissue (or stromal) compartment of ''semi-professional APCs''. These APCs (which express most of the molecular machinery of professional APCs) have the unique feature of forming virtually planar cell surface and are readily transfectable (e.g., with fluorescent protein reporters). Herein a basic approach to implement endothelial cells as a novel and physiologic ''planar cellular APC model'' for improved imaging and interrogation of fundamental antigenic signaling processes will be described. 相似文献
15.
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease. During the pathogenesis, patients become progressively more insulinopenic as insulin production is lost, presumably this results from the destruction of pancreatic beta cells by T cells. Understanding the mechanisms of beta cell death during the development of T1D will provide insights to generate an effective cure for this disease. Cell-mediated lymphocytotoxicity (CML) assays have historically used the radionuclide Chromium 51 (51Cr) to label target cells. These targets are then exposed to effector cells and the release of 51Cr from target cells is read as an indication of lymphocyte-mediated cell death. Inhibitors of cell death result in decreased release of 51Cr. As effector cells, we used an activated autoreactive clonal population of CD8+ Cytotoxic T lymphocytes (CTL) isolated from a mouse stock transgenic for both the alpha and beta chains of the AI4 T cell receptor (TCR). Activated AI4 T cells were co-cultured with 51Cr labeled target NIT cells for 16 hours, release of 51Cr was recorded to calculate specific lysis Mitochondria participate in many important physiological events, such as energy production, regulation of signaling transduction, and apoptosis. The study of beta cell mitochondrial functional changes during the development of T1D is a novel area of research. Using the mitochondrial membrane potential dye Tetramethyl Rhodamine Methyl Ester (TMRM) and confocal microscopic live cell imaging, we monitored mitochondrial membrane potential over time in the beta cell line NIT-1. For imaging studies, effector AI4 T cells were labeled with the fluorescent nuclear staining dye Picogreen. NIT-1 cells and T cells were co-cultured in chambered coverglass and mounted on the microscope stage equipped with a live cell chamber, controlled at 37°C, with 5% CO2, and humidified. During these experiments images were taken of each cluster every 3 minutes for 400 minutes.Over a course of 400 minutes, we observed the dissipation of mitochondrial membrane potential in NIT-1 cell clusters where AI4 T cells were attached. In the simultaneous control experiment where NIT-1 cells were co-cultured with MHC mis-matched human lymphocyte Jurkat cells, mitochondrial membrane potential remained intact. This technique can be used to observe real-time changes in mitochondrial membrane potential in cells under attack of cytotoxic lymphocytes, cytokines, or other cytotoxic reagents. 相似文献
16.
Pei-Ju Hsu Ko-Jiunn Liu Ying-Yin Chao Huey-Kang Sytwu B. Linju Yen 《Journal of visualized experiments : JoVE》2015,(106)
The immunomodulatory properties of multilineage human mesenchymal stem cells (MSCs) appear to be highly relevant for clinical use towards a wide-range of immune-related diseases. Mechanisms involved are increasingly being elucidated and in this article, we describe the basic experiment to assess MSC immunomodulation by assaying for suppression of effector leukocyte proliferation. Representing activation, leukocyte proliferation can be assessed by a number of techniques, and we describe in this protocol the use of the fluorescent cellular dye carboxyfluorescein succinimidyl ester (CFSE) to label leukocytes with subsequent flow cytometric analyses. This technique can not only assess proliferation without radioactivity, but also the number of cell divisions that have occurred as well as allowing for identification of the specific population of proliferating cells and intracellular cytokine/factor expression. Moreover, the assay can be tailored to evaluate specific populations of effector leukocytes by magnetic bead surface marker selection of single peripheral blood mononuclear cell populations prior to co-culture with MSCs. The flexibility of this co-culture assay is useful for investigating cellular interactions between MSCs and leukocytes. 相似文献
17.
Maria Muccioli Michelle Pate Omowaleola Omosebi Fabian Benencia 《Journal of visualized experiments : JoVE》2011,(52)
Dendritic cells (DCs) are professional antigen presenting cells (APCs) found in peripheral tissues and in immunological organs such as thymus, bone marrow, spleen, lymph nodes and Peyer''s patches 1-3. DCs present in peripheral tissues sample the organism for the presence of antigens, which they take up, process and present in their surface in the context of major histocompatibility molecules (MHC). Then, antigen-loaded DCs migrate to immunological organs where they present the processed antigen to T lymphocytes triggering specific immune responses. One way to evaluate the migratory capabilities of DCs is to label them with fluorescent dyes 4.Herewith we demonstrate the use of Qdot fluorescent nanocrystals to label murine bone marrow-derived DC. The advantage of this labeling is that Qdot nanocrystals possess stable and long lasting fluorescence that make them ideal for detecting labeled cells in recovered tissues. To accomplish this, first cells will be recovered from murine bone marrows and cultured for 8 days in the presence of granulocyte macrophage-colony stimulating factor in order to induce DC differentiation. These cells will be then labeled with fluorescent Qdots by short in vitro incubation. Stained cells can be visualized with a fluorescent microscopy. Cells can be injected into experimental animals at this point or can be into mature cells upon in vitro incubation with inflammatory stimuli. In our hands, DC maturation did not determine loss of fluorescent signal nor does Qdot staining affect the biological properties of DCs. Upon injection, these cells can be identified in immune organs by fluorescent microscopy following typical dissection and fixation procedures. 相似文献
18.
The study of human T lymphocyte biology often involves examination of responses to activating ligands. T cells recognize and respond to processed peptide antigens presented by MHC (human ortholog HLA) molecules through the T cell receptor (TCR) in a highly sensitive and specific manner. While the primary function of T cells is to mediate protective immune responses to foreign antigens presented by self-MHC, T cells respond robustly to antigenic differences in allogeneic tissues. T cell responses to alloantigens can be described as either direct or indirect alloreactivity. In alloreactivity, the T cell responds through highly specific recognition of both the presented peptide and the MHC molecule. The robust oligoclonal response of T cells to allogeneic stimulation reflects the large number of potentially stimulatory alloantigens present in allogeneic tissues. While the breadth of alloreactive T cell responses is an important factor in initiating and mediating the pathology associated with biologically-relevant alloreactive responses such as graft versus host disease and allograft rejection, it can preclude analysis of T cell responses to allogeneic ligands. To this end, this protocol describes a method for generating alloreactive T cells from naive human peripheral blood leukocytes (PBL) that respond to known peptide-MHC (pMHC) alloantigens. The protocol applies pMHC multimer labeling, magnetic bead enrichment and flow cytometry to single cell in vitro culture methods for the generation of alloantigen-specific T cell clones. This enables studies of the biochemistry and function of T cells responding to allogeneic stimulation. 相似文献
19.
Jayesh Dudhia Patricia Becerra Miguel A. Valdés Francisco Neves Neil G. Hartman Roger K.W. Smith 《Journal of visualized experiments : JoVE》2015,(106)
Recent advances in the application of bone marrow mesenchymal stem cells (BMMSC) for the treatment of tendon and ligament injuries in the horse suggest improved outcome measures in both experimental and clinical studies. Although the BMMSC are implanted into the tendon lesion in large numbers (usually 10 - 20 million cells), only a relatively small number survive (<10%) although these can persist for up to 5 months after implantation. This appears to be a common observation in other species where BMMSC have been implanted into other tissues and it is important to understand when this loss occurs, how many survive the initial implantation process and whether the cells are cleared into other organs. Tracking the fate of the cells can be achieved by radiolabeling the BMMSC prior to implantation which allows non-invasive in vivo imaging of cell location and quantification of cell numbers.This protocol describes a cell labeling procedure that uses Technetium-99m (Tc-99m), and tracking of these cells following implantation into injured flexor tendons in horses. Tc-99m is a short-lived (t1/2 of 6.01 hr) isotope that emits gamma rays and can be internalized by cells in the presence of the lipophilic compound hexamethylpropyleneamine oxime (HMPAO). These properties make it ideal for use in nuclear medicine clinics for the diagnosis of many different diseases. The fate of the labeled cells can be followed in the short term (up to 36 hr) by gamma scintigraphy to quantify both the number of cells retained in the lesion and distribution of the cells into lungs, thyroid and other organs. This technique is adapted from the labeling of blood leukocytes and could be utilized to image implanted BMMSC in other organs. 相似文献
20.
Sreemanti Basu Hope M. Campbell Bonnie N. Dittel Avijit Ray 《Journal of visualized experiments : JoVE》2010,(41)
Experimental and clinical studies often require highly purified cell populations. FACS is a technique of choice to purify cell populations of known phenotype. Other bulk methods of purification include panning, complement depletion and magnetic bead separation. However, FACS has several advantages over other available methods. FACS is the preferred method when very high purity of the desired population is required, when the target cell population expresses a very low level of the identifying marker or when cell populations require separation based on differential marker density. In addition, FACS is the only available purification technique to isolate cells based on internal staining or intracellular protein expression, such as a genetically modified fluorescent protein marker. FACS allows the purification of individual cells based on size, granularity and fluorescence. In order to purify cells of interest, they are first stained with fluorescently-tagged monoclonal antibodies (mAb), which recognize specific surface markers on the desired cell population (1). Negative selection of unstained cells is also possible. FACS purification requires a flow cytometer with sorting capacity and the appropriate software. For FACS, cells in suspension are passed as a stream in droplets with each containing a single cell in front of a laser. The fluorescence detection system detects cells of interest based on predetermined fluorescent parameters of the cells. The instrument applies a charge to the droplet containing a cell of interest and an electrostatic deflection system facilitates collection of the charged droplets into appropriate collection tubes (2). The success of staining and thereby sorting depends largely on the selection of the identifying markers and the choice of mAb. Sorting parameters can be adjusted depending on the requirement of purity and yield. Although FACS requires specialized equipment and personnel training, it is the method of choice for isolation of highly purified cell populations. 相似文献