首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cytotherapy》2014,16(10):1390-1408
Background aimsCytomegalovirus (CMV) reactivation remains an important risk after hematopoietic stem cell transplantation, which can be effectively controlled through adoptive transfer of donor-derived CMV-specific T cells (CMV-T). CMV-T are usually obtained from donor peripheral blood mononuclear cells (PBMCs) collected before G-CSF mobilization. Despite previous studies that showed impaired T-cell function after granulocyte colony-stimulating factor (G-CSF) mobilization, recent publications suggest that G-CSF-primed PBMCs retain anti-viral function and are a suitable starting material for CMV-T manufacturing. The objective of this study was to assess the feasibility of generating CMV-T from G-CSF–mobilized donors by use of the activation marker CD137 in comparison with conventional non-primed PBMCs.MethodsCMV-T were isolated from G-CSF–mobilized and non-mobilized donor PBMCs on the basis of CMVpp65 activation-induced CD137 expression and expanded during 3 weeks. Functional assays were performed to assess antigen-specific activation, cytokine release, cytotoxic activity and proliferation after anti-genic re-stimulation.ResultsWe successfully manufactured highly specific, functional and cytotoxic CMV-T from G-CSF–mobilized donor PBMCs. Their anti-viral function was equivalent to non-mobilized CMV-T, and memory phenotype would suggest their long-term maintenance after adoptive transfer.ConclusionsWe confirm that the use of an aliquot from G-CSF–mobilized donor samples is suitable for the manufacturing of CMV cellular therapies and thereby abrogates the need for successive donations and ensures the availability for patients with unrelated donors.  相似文献   

2.
Background  Alloreaction is known to accumulate several theoretical advantages that can improve dendritic cell (DC)-based anti-infective or antitumour strategies. Allogeneic DC have already been tested in experimental and clinical studies, but their efficacy compared with their autologous counterparts was rarely investigated and conclusions diverge. Objective  This study compared antigen-specific T cell responses following priming with autologous versus allogeneic DC and examined the possibility of screening these responses in order to select allogeneic DC that lead to a great amplification. Results  Allogeneic DC obtained from donors matched with the single HLA-A2 allele were efficient in generating in vitro peptide-specific T cell responses. When randomly chosen, allogeneic DC generated a broad range of antigen-specific T cell responses in comparison with autologous DC. When screened and selected, allogeneic DC markedly enhanced peptide-specific T cell priming and allowed a more efficient boosting of resulting T cells. These selected allogeneic DC provided a favourable cytokinic and cellular environment that can help concurrent antigen-specific responses. Conclusion  Ex vivo selected allogeneic DC provide adjuvant effects that lead to amplification of concomitant antigen-specific T cell responses. A. Gervais and J.-C. Eymard contributed equally to this work.  相似文献   

3.
The direct modulation of T cell responses is an emerging therapeutic strategy with the potential to modulate undesired immune responses including, autoimmune disease, and allogeneic cells transplantation. We have previously demonstrated that poly(lactide-co-glycolide) particles were able to modulate T cell responses indirectly through antigen-presenting cells (APCs). In this report, we investigated the design of nanoparticles that can directly interact and modulate T cells by coating the membranes from APCs onto nanoparticles to form membrane-coated nanoparticles (MCNPs). Proteins within the membranes of the APCs, such as Major Histocompatibility Complex class II and co-stimulatory factors, were effectively transferred to the MCNP. Using alloreactive T cell models, MCNP derived from allogeneic dendritic cells were able to stimulate proliferation, which was not observed with membranes from syngeneic dendritic cells and influenced cytokine secretion. Furthermore, we investigated the engineering of the membranes either on the dendritic cells or postfabrication of MCNP. Engineered membranes could be to promote antigen-specific responses, to differentially activate T cells, or to directly induce apoptosis. Collectively, MCNPs represent a tunable platform that can directly interact with and modulate T cell responses.  相似文献   

4.
Abstract We measured the production of interferon-gamma (IFN-γ) from single T cells and the T cell proliferative response to different cytomegalovirus (CMV) antigens in healthy blood donors and bone marrow transplant recipients. The antigens consisted of a CMV nuclear antigen (CMV na) containing the pp65-kDa matrix protein and the immediate early antigens but lacking CMV glycoproteins, and an antigen comprising native CMV glycoproteins (CMV gp). We also measured the IgG antibodies to CMV na and CMV gp. The T cells reacted to CMV na in CMV seropositive blood donors both with the production of IFN-γ and with proliferation, while bone marrow transplant recipients had a deficient T cell response. After stimulation with CMV gp, no T cell response could be observed in CMV seropositive subjects. IgG antibodies to CMV na coexisted in plasma with similar levels of antibodies to CMV gp.  相似文献   

5.

Background

Adenovirus (ADV) reactivation can cause significant morbidity and mortality in children after allogeneic stem cell transplantation. Antiviral drugs can control viremia, but viral clearance requires recovery of cell-mediated immunity.

Method

This study was an open-label phase 1/2 study to investigate the feasibility of generating donor-derived ADV-specific T cells (Cytovir ADV, Cell Medica) and to assess the safety of pre-emptive administration of ADV-specific T cells in high-risk pediatric patients after allogeneic hematopoietic stem cell transplantation (HSCT) to treat adenoviremia. Primary safety endpoints included graft-versus-host disease (GvHD), and secondary endpoints determined antiviral responses and use of antiviral drugs.

Results

Between January 2013 and May 2016, 92 donors were enrolled for the production of ADV T cells at three centers in the United Kingdom (UK), and 83 products were generated from 72 mobilized peripheral blood harvests and 20 steady-state whole blood donations. Eight children received Cytovir ADV T cells after standard therapy and all resolved ADV viremia between 15 and 127 days later. ADV-specific T cells were detectable using enzyme-linked immunospot assay (ELISpot) in the peripheral blood of all patients analyzed. Serious adverse events included Grade II GvHD, Astrovirus encephalitis and pancreatitis.

Conclusion

The study demonstrates the safety and feasibility of pre-emptively manufacturing peptide pulsed ADV-specific cells for high-risk pediatric patients after transplantation and provides early evidence of clinical efficacy.  相似文献   

6.
Previous studies have shown that recognition of melanoma by cytotoxic T lymphocytes may be restricted by HLA-A1, A2 and other HLA antigens. The present study examined the cytotoxic specificity and major histocompatibility complex restriction of cloned cytotoxic T lymphocytes (CTL) isolated from a patient with the HLA phenotype A3,31 who had been immunized with a vaccine prepared from HLA-A1,3 melanoma cells. Cytotoxic assays against HLA-typed allogeneic melanoma cells indicated that cloned CTL from the patient were able to kill allogeneic melanoma cells expressing HLA-A1 but not other HLA-A1-positive cells. Studies on a representative clone indicated that proliferation and cytokine (tumour necrosis factor ) production in response to melanoma cells was also associated with HLA-A1 on melanoma cells. Response to the melanoma cells was associated with interleukin-4 (IL-4) rather than IL-2 production. The antigen recognized in the context of HLA-A1 on allogeneic melanoma cells was detected in cytotoxic assays on cells from 9 of 12 HLA-A1+ melanoma cell lines and did not appear to be the product of the MAGE-1 or-3 genes. These findings suggest that T cells can recognize melanoma antigens in the context of alloantigens and that allogeneic vaccines containing immunodominant alloantigens may generate CTL that are ineffective against autologous melanoma. The study does not, however, exclude the possibility that CTL with specificity to the latter may be activated by allogeneic vaccines, and further studies are needed to answer this question.  相似文献   

7.
Previous studies have demonstrated the effective control of cytomegalovirus (CMV) infections post haematopoietic stem cell transplant through the adoptive transfer of donor derived CMV-specific T cells (CMV-T). Strategies for manufacturing CMV immunotherapies has involved a second leukapheresis or blood draw from the donor, which in the unrelated donor setting is not always possible. We have investigated the feasibility of using an aliquot of the original G-CSF-mobilized graft as a starting material for manufacture of CMV-T and examined the activation marker CD25 as a targeted approach for identification and isolation following CMVpp65 peptide stimulation. CD25+ cells isolated from G-CSF-mobilized apheresis revealed a significant increase in the proportion of FoxP3 expression when compared with conventional non-mobilized CD25+ cells and showed a superior suppressive capacity in a T cell proliferation assay, demonstrating the emergence of a population of Tregs not present in non-mobilized apheresis collections. The expansion of CD25+ CMV-T in short-term culture resulted in a mixed population of CD4+ and CD8+ T cells with CMV-specificity that secreted cytotoxic effector molecules and lysed CMVpp65 peptide-loaded phytohaemagglutinin-stimulated blasts. Furthermore CD25 expanded cells retained their suppressive capacity but did not maintain FoxP3 expression or secrete IL-10. In summary our data indicates that CD25 enrichment post CMV stimulation in G-CSF-mobilized PBMCs results in the simultaneous generation of both a functional population of anti-viral T cells and Tregs thus illustrating a potential single therapeutic strategy for the treatment of both GvHD and CMV reactivation following allogeneic haematopoietic stem cell transplantation. The use of G-CSF-mobilized cells as a starting material for cell therapy manufacture represents a feasible approach to alleviating the many problems incurred with successive donations and procurement of cells from unrelated donors. This approach may therefore simplify the clinical application of adoptive immunotherapy and broaden the approach for manufacturing multi-functional T cells.  相似文献   

8.
《Cytotherapy》2014,16(1):135-146
Background aimsThe human leukemia cell line K562 represents an attractive platform for creating artificial antigen-presenting cells (aAPC). It is readily expandable, does not express human leukocyte antigen (HLA) class I and II and can be stably transduced with various genes.MethodsIn order to generate cytomegalovirus (CMV) antigen-specific T cells for adoptive immunotherapy, we transduced K562 with HLA-A10201 in combination with co-stimulatory molecules.ResultsIn preliminary experiments, irradiated K562 expressing HLA-A10201 and 4-1BBL pulsed with CMV pp65 and IE-1 peptide libraries failed to elicit antigen-specific CD8+ T cells in HLA-A10201+ peripheral blood mononuclear cells (PBMC) or isolated T cells. Both wild-type K562 and aAPC strongly inhibited T cell proliferation to the bacterial superantigen staphylococcal enterotoxin B (SEB) and OKT3 and in mixed lymphocyte reaction (MLR). Transwell experiments suggested that suppression was mediated by a soluble factor; however, MLR inhibition was not reversed using transforming growth factor-β blocking antibody or prostaglandin E2 inhibitors. Full abrogation of the suppressive activity of K562 on MLR, SEB and OKT3 stimulation was only achieved by brief fixation with 0.1% formaldehyde. Fixed, pp65 and IE-1 peptide-loaded aAPC induced robust expansion of CMV-specific T cells.ConclusionsFixed gene-modified K562 can serve as effective aAPC to expand CMV-specific cytotoxic T lymphocytes for therapeutic use in patients after stem cell transplantation. Our findings have implications for broader understanding of the immune evasion mechanisms used by leukemia and other tumors.  相似文献   

9.
Clinical trials in recent years involving the adoptive transfer of antigen-specific cytotoxic T lymphocytes (CTL) have shown promise in restoring immunity against viral infection and reducing tumor burden in patients with solid and hematological malignancies. However, the large cell number required to achieve efficacy, 10(9) to 10(11), makes routine application of adoptive immunotherapy impractical. Investigation into new methods of CTL expansion may be useful in addressing this problem. Use of stirred suspension bioreactors are one such method that may allow large-scale T-cell expansion. Suspension cultures offer advantages over conventional static culture methods, including providing a homogeneous culture environment, and the potential for optimization and control of culture conditions. We generated cytomegalovirus (CMV)-specific CTL and investigated the potential of stirred bioreactor systems for expansion of large cell numbers. We found that CTL can be readily expanded ( > 200-fold) from cryopreserved stocks by nonspecific stimulation in the presence of allogeneic feeder cells and interleukin-2 (IL-2). Activated CTL inoculated into either suspension or static cultures could be subsequently expanded tenfold, and showed similar growth kinetics and metabolism independent of the culture vessel used. Furthermore, CTL remained specific for CMVpp65 peptide through the expansion phases, as demonstrated by pp65-tetramer staining ( > 95% tetramer(+)) and cytotoxicity assays. This study indicates that suspension reactor systems may be useful in large-scale expansion of antigen-specific CTL lines or clones, and may facilitate the advancement of routine adoptive immunotherapy.  相似文献   

10.
Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APCs). As few as 2x105/kg trivirus-specific cytotoxic T lymphocytes (CTL) proliferated by several logs after infusion and appeared to prevent and treat even severe viral disease resistant to other available therapies. The broader implementation of this encouraging approach is limited by high production costs, complexity of manufacture and the prolonged time (4-6 weeks for EBV-LCL generation, and 4-8 weeks for CTL manufacture – total 10-14 weeks) for preparation. To overcome these limitations we have developed a new, GMP-compliant CTL production protocol. First, in place of adenovectors to stimulate T-cells we use dendritic cells (DCs) nucleofected with DNA plasmids encoding LMP2, EBNA1 and BZLF1 (EBV), Hexon and Penton (Adv), and pp65 and IE1 (CMV) as antigen-presenting cells. These APCs reactivate T cells specific for all the stimulating antigens. Second, culture of activated T-cells in the presence of IL-4 (1,000U/ml) and IL-7 (10ng/ml) increases and sustains the repertoire and frequency of specific T cells in our lines. Third, we have used a new, gas permeable culture device (G-Rex) that promotes the expansion and survival of large cell numbers after a single stimulation, thus removing the requirement for EBV-LCLs and reducing technician intervention. By implementing these changes we can now produce multispecific CTL targeting EBV, CMV, and Adv at a cost per 106 cells that is reduced by >90%, and in just 10 days rather than 10 weeks using an approach that may be extended to additional protective viral antigens. Our FDA-approved approach should be of value for prophylactic and treatment applications for high risk allogeneic HSCT recipients.  相似文献   

11.
The study of human T lymphocyte biology often involves examination of responses to activating ligands. T cells recognize and respond to processed peptide antigens presented by MHC (human ortholog HLA) molecules through the T cell receptor (TCR) in a highly sensitive and specific manner. While the primary function of T cells is to mediate protective immune responses to foreign antigens presented by self-MHC, T cells respond robustly to antigenic differences in allogeneic tissues. T cell responses to alloantigens can be described as either direct or indirect alloreactivity. In alloreactivity, the T cell responds through highly specific recognition of both the presented peptide and the MHC molecule. The robust oligoclonal response of T cells to allogeneic stimulation reflects the large number of potentially stimulatory alloantigens present in allogeneic tissues. While the breadth of alloreactive T cell responses is an important factor in initiating and mediating the pathology associated with biologically-relevant alloreactive responses such as graft versus host disease and allograft rejection, it can preclude analysis of T cell responses to allogeneic ligands. To this end, this protocol describes a method for generating alloreactive T cells from naive human peripheral blood leukocytes (PBL) that respond to known peptide-MHC (pMHC) alloantigens. The protocol applies pMHC multimer labeling, magnetic bead enrichment and flow cytometry to single cell in vitro culture methods for the generation of alloantigen-specific T cell clones. This enables studies of the biochemistry and function of T cells responding to allogeneic stimulation.  相似文献   

12.
In order to fully understand T cell-mediated immunity, the mechanisms that regulate clonal expansion and cytokine production by CD4+ antigen-specific effector T cells in response to a wide range of antigenic stimulation needs clarification. For this purpose, panels of antigen-specific CD4+ T cell clones with different thresholds for antigen-induced proliferation were generated by repeated stimulation with high- or low-dose antigen. Differences in antigen sensitivities did not correlate with expression of TCR, CD4, adhesion or costimulatory molecules. There was no significant difference in antigen-dependent cytokine production by TG40 cells transfected with TCR obtained from either high- or low-dose-responding T cell clones, suggesting that the affinity of TCRs for their ligands is not primary determinant of T cell antigen reactivity. The proliferative responses of all T cell clones to both peptide stimulation and to TCRβ crosslinking revealed parallel dose-response curves. These results suggest that the TCR signal strength of effector T cells and threshold of antigen reactivity is determined by an intrinsic property, such as the TCR signalosome and/or intracellular signaling machinery. Finally, the antigen responses of high- and low-peptide-responding T cell clones reveal that clonal expansion and cytokine production of effector T cells occur independently of antigen concentration. Based on these results, the mechanisms underlying selection of high “avidity” effector and memory T cells in response to pathogen are discussed.  相似文献   

13.
A mouse containing an IL-4 promoter linked to the yellow fluorescent protein (YFP) reporter transgene was created to follow aspects of lymphocyte development and function. Following stimulation with phorbol 12-myristate 13-acetate and ionomycin, anti-CD3/CD28, antigen-specific peptide, or allogeneic cells, both CD4 and CD8 T cells expressed the transgene within 24h in a manner that was consistent with cellular activation markers. Transgene induction was inhibited by cyclosporine and FK506, suggesting that its activation occurs in an NFAT-dependent manner. B lymphocytes were also able to express the transgene when stimulated with LPS. This induction was inhibited in part by rapamycin. The results suggest that this transgene can function as an indicator of lymphocyte activation. Because YFP is not toxic and requires no preparation of the cells to view the reporter gene, this system provides a unique tool to follow lymphocyte activation in a number of model systems, such as those involving transplantation, allergy, and vaccine development.  相似文献   

14.
Renal cell carcinoma (RCC) has been shown to be susceptible to immunotherapeutic treatment strategies. In the present study, patient-derived tumor cells were fused with allogeneic dendritic cells (DC) to elicit anti-tumor activity against RCC. DC from HLA-A2+ healthy donors were fused with primary RCC cells from ten patients. Phenotype of fusion cells were characterized by flow cytometer and confocal microscopy. In vitro, T cell proliferation, IFN-γ secretion and cytotocic T lymphocytes (CTL) activity elicited by allogeneic DC/RCC fusion cells were assessed. Clinically, ten patients were vaccinated with allogeneic DC/RCC fusion vaccine. The adverse effects and toxicity were observed. The clinical response was evaluated by CT scans. After fusion, the created hybrids expressed both tumor associated antigen and DC-derived molecules and could stimulate the proliferation and IFN-γ secretion of T cells as well as elicit strong CTL activity against RCC cells in vitro. In vivo, no serious adverse effects, toxicity, or signs of autoimmune disease were observed after vaccination therapy. Percentage of T lymphocyte subsets in peripheral blood of patients was increased significantly. One of ten patients exhibited a partial response with regression of lung metastases. Six patients showed stable disease with stabilization of previously progressive disease (follow up 1.5 years). The PR and SD responses, exhibited by 7/10 patients who received the allogeneic DC/RCC fusion vaccine treatment, suggest that this approach is safe and can elicit immunological responses in a significant portion of patients with RCC. J. Zhou and D. Weng contributed equally.  相似文献   

15.
Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin–biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.  相似文献   

16.
Cytotoxic T lymphocytes (CTLs) specific for the Epstein-Barr virus (EBV) latent membraneprotein 2 (LMP2) antigen are important reagents for the treatment of some EBV-associated malignancies,such as EBV-positive Hodgkin's disease and nasopharyngeal carcinoma.However,the therapeutic amount ofCTLs is often hampered by the limited supply of antigen-presenting cells.To address this issue,an artificialantigen-presenting cell (aAPC) was made by coating a human leukocyte antigen (HLA)-pLMP2 tetramericcomplex,anti-CD28 antibody and CD54 molecule to a cell-sized latex bead,which provided the dual signalsrequired for T cell activation.By co-culture of the HLA-A2-LMP2 bearing aAPC and peripheral bloodmononuclear cells from HLA-A2 positive healthy donors,LMP2 antigen-specific CTLs were induced andexpanded in vitro.The specificity of the aAPC-induced CTLs was demonstrated by both HLA-A2-LMP2tetramer staining and cytotoxicity against HLA-A2-LMP2 bearing T2 cell,the cytotoxicity was inhibited bythe anti-HLA class Ⅰ antibody (W6/32).These results showed that LMP2 antigen-specific CTLs could beinduced and expanded in vitro by the HLA-A2-LMP2-bearing aAPC.Thus,aAPCs coated with an HLA-pLMP2 complex,anti-CD28 and CD54 might be promising tools for the enrichment of LMP2-specificCTLs for adoptive immunotherapy.  相似文献   

17.
Adoptive cell transfer (ACT) of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies (1). CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines (2-7). However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases (8-10). However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic (11-13), HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture (14-16). Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.  相似文献   

18.
An attenuated West Nile virus (WNV), a nonstructural (NS) 4B-P38G mutant, induced higher innate cytokine and T cell responses than the wild-type WNV in mice. Recently, myeloid differentiation factor 88 (MyD88) signaling was shown to be important for initial T cell priming and memory T cell development during WNV NS4B-P38G mutant infection. In this study, two flow cytometry-based methods – an in vitro T cell priming assay and an intracellular cytokine staining (ICS) – were utilized to assess dendritic cells (DCs) and T cell functions. In the T cell priming assay, cell proliferation was analyzed by flow cytometry following co-culture of DCs from both groups of mice with carboxyfluorescein succinimidyl ester (CFSE) - labeled CD4+ T cells of OTII transgenic mice. This approach provided an accurate determination of the percentage of proliferating CD4+ T cells with significantly improved overall sensitivity than the traditional assays with radioactive reagents. A microcentrifuge tube system was used in both cell culture and cytokine staining procedures of the ICS protocol. Compared to the traditional tissue culture plate-based system, this modified procedure was easier to perform at biosafety level (BL) 3 facilities. Moreover, WNV- infected cells were treated with paraformaldehyde in both assays, which enabled further analysis outside BL3 facilities. Overall, these in vitro immunological assays can be used to efficiently assess cell-mediated immune responses during WNV infection.  相似文献   

19.
Multifunctional T cells expressing several cytokines in parallel are thought to play a crucial role in protection against different infections. To characterize T cell cytokine patterns associated with disease and protection in Mycobacterium tuberculosis infection we determined the expression of IFNγ, IL-2, TNFα, and GM-CSF in T cell subpopulations from children with tuberculosis (TB) and healthy latently M. tuberculosis-infected children (LTBI) after short-term in vitro restimulation. We identified CD4+ effector memory T cells (TEM) as the major source of all measured cytokines after antigen-specific restimulation. TEM from children with TB expressed higher proportions of IFNγ, TNFα, and IL-2 after Mtb restimulation while no differences were detected for GM-CSF between both study groups. GM-CSF secretion strongly depended on antigen-specific stimulation. Analyses of multiple cytokine patterns revealed that the majority of GM-CSF-positive M. tuberculosis-specific memory T cells coexpressed IFNγ and TNFα therefore showing a characteristic feature of multifunctional T cells. We conclude that children with active TB possess higher proportions of IFNγ-, TNFα-, and/or IL-2-positive TEM than children with LTBI while GM-CSF coexpression reveals a novel subpopulation within CD4+ memory T cells not increased in children with active TB.  相似文献   

20.
Chimeric antigen receptor T‐cell (CAR‐T) therapies have proven clinical efficacy for the treatment of hematological malignancies. However, CAR‐T cell therapies are prohibitively expensive to manufacture. The authors demonstrate the manufacture of human CAR‐T cells from multiple donors in an automated stirred‐tank bioreactor. The authors successfully produced functional human CAR‐T cells from multiple donors under dynamic conditions in a stirred‐tank bioreactor, resulting in overall cell yields which were significantly better than in static T‐flask culture. At agitation speeds of 200 rpm and greater (up to 500 rpm), the CAR‐T cells are able to proliferate effectively, reaching viable cell densities of >5 × 106 cells ml‐1 over 7 days. This is comparable with current expansion systems and significantly better than static expansion platforms (T‐flasks and gas‐permeable culture bags). Importantly, engineered T‐cells post‐expansion retained expression of the CAR gene and retained their cytolytic function even when grown at the highest agitation intensity. This proves that power inputs used in this study do not affect cell efficacy to target and kill the leukemia cells. This is the first demonstration of human CAR‐T cell manufacture in stirred‐tank bioreactors and the findings present significant implications and opportunities for larger‐scale allogeneic CAR‐T production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号