共查询到20条相似文献,搜索用时 0 毫秒
1.
Gastric ulceration is a prevalent worldwide clinical presentation due to altered gastric defense mechanisms. Nonsteroidal anti-inflammatory drugs are one of the common causes of gastric ulcers mediated by the release of inflammatory mediators. The study aimed to investigate the potential protective effect of soyasaponin I (soya) against diclofenac (DIC)-induced gastric ulcer in rats and to highlight the underlying mechanisms. The experiment was conducted on 40 male Wistar albino rats, equally distributed into five groups: control, DIC-induced ulcer (9 mg/kg/d, orally, twice daily for 3 days), ulcer/soya-, ulcer/ranitidine-, and ulcer/soya/selective nuclear factor kappa B inhibitor (JSH-23)-treated groups. The doses of soya, ranitidine, and JSH were 20, 25, and 5 mg/kg/d, respectively, given orally. Gastric specimens were prepared for gene and histological study and for biochemical analysis of gastric prostaglandin E2 (PGE2), oxidative markers, and inflammatory cytokines. The gastric samples were formalin-fixed, paraffin-embedded, and subjected to hematoxylin and eosin (H&E), PAS staining, and immunohistochemical assay for identification of nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), and proliferation marker (Ki67) expressions. The findings revealed decreased gastric PGE2 and altered inflammatory and oxidative markers in the ulcer model group. The H&E staining showed mucosal injury characterized by mucosal surface defects and inflammatory cell infiltrations. The polymerase chain reaction (PCR) and immunohistochemistry demonstrated an upregulation of NF-κB and COX-2 expression at gene/protein levels; meanwhile, Ki67 downregulation. The soya-treated group showed maintained biochemical, histological, and PCR findings comparable to the ranitidine-treated group. The JSH-23-treated group still showed partial gastric protection with biochemical and immunohistochemical changes. Soyasaponin I ameliorated DIC-induced gastric ulcers by targeting the COX-2 activity through modulation of NF-κB signaling. 相似文献
3.
Objective: The objectives of our study were to investigate the possible effect of rosuvastatin in ameliorating high salt and cholesterol diet (HSCD)-induced cognitive impairment and to also investigate its possible action via the Nrf2-ARE pathway. Methods: In silico studies were performed to check the theoretical binding of rosuvastatin to the Nrf2 target. HSCD was used to induce cognitive impairment in rats and neurobehavioral studies were performed to evaluate the efficacy of rosuvastatin in enhancing cognition. Biochemical analyses were used to estimate changes in oxidative markers. Western blot and immunohistochemical analyses were done to check Nrf2 translocation. TUNEL and caspase 3 tests were performed to evaluate reversal of apoptosis by rosuvastatin. Results: Rosuvastatin showed good theoretical affinity to Nrf2, significantly reversed changes in oxidative biomarkers which were induced by HSCD, and also improved the performance of rats in the neurobehavioral test. A rise in nuclear translocation of Nrf2 was revealed through immunohistochemical analysis and western blot. TUNEL staining and caspase 3 activity showed attenuation of apoptosis. Discussion: We have investigated a novel mechanism of action for rosuvastatin (via the Nrf2–ARE pathway) and demonstrated that it has the potential to be used in the treatment of cognitive impairment. 相似文献
4.
Oleuropein is the pungent principle of raw olives. Oleuropein aglycone (OA) is a major phenolic compound in extra virgin olive oil and the absorbed form of oleuropein. We aimed to determine the mechanism underlying the nutritional effects of oleuropein and OA on interscapular brown adipose tissue (IBAT) in rats with high-fat (HF) diet-induced obesity by examining the agonistic activity of oleuropein and OA toward the transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). Four-week-old male Sprague–Dawley rats were fed an HF (palm oil 30% wt:wt) diet alone or with oleuropein (HF-O, 1 g/kg diet) for 28 days. In rats fed HF-O compared to HF, urinary noradrenaline, adrenaline and UCP1 levels in IBAT were significantly higher, whereas plasma leptin levels and the total weight of the abdominal cavity adipose tissue were significantly lower. In anaesthetized 7-week-old male Sprague–Dawley rats, the OA (3.8 mg of intravenous injection)-induced increase in plasma noradrenaline secretion was suppressed by TRPA1 or TRPV1 antagonist and by a β2- or β3-adrenoceptor antagonist. Furthermore, OA-activated rat and human TRPV1s expressed on HEK293 cells at the same level as zingerone (pungent component in ginger). OA also activated humanTRPA1, and its potency was approximately 10-fold stronger than that for TRPV1. These findings suggest that OA is the agonist of both TRPA1 and TRPV1 and that OA enhances UCP1 expression in IBAT with a concomitant decrease in the visceral fat mass of HF-diet-induced obese rats through enhanced noradrenaline secretion via β-adrenergic action following TRPA1 and TRPV1 activation. 相似文献
6.
Calcium (Ca 2+) is an almost universal second messenger that regulates important activities of all eukaryotic cells. It is of critical importance to neurons, which have developed extensive and intricate pathways to couple the Ca 2+ signal to their biochemical machinery. In particular, Ca 2+ participates in the transmission of the depolarizing signal and contributes to synaptic activity. During aging and in neurodegenerative disease processes, the ability of neurons to maintain an adequate energy level can be compromised, thus impacting on Ca 2+ homeostasis. In Parkinson’s disease (PD), many signs of neurodegeneration result from compromised mitochondrial function attributable to specific effects of toxins on the mitochondrial respiratory chain and/or to genetic mutations. Despite these effects being present in almost all cell types, a distinguishing feature of PD is the extreme selectivity of cell loss, which is restricted to the dopaminergic neurons in the ventral portion of the substantia nigra pars compacta. Many hypotheses have been proposed to explain such selectivity, but only recently it has been convincingly shown that the innate autonomous activity of these neurons, which is sustained by their specific Cav1.3 L-type channel pore-forming subunit, is responsible for the generation of basal metabolic stress that, under physiological conditions, is compensated by mitochondrial buffering. However, when mitochondria function becomes even partially compromised (because of aging, exposure to environmental factors or genetic mutations), the metabolic stress overwhelms the protective mechanisms, and the process of neurodegeneration is engaged. The characteristics of Ca 2+ handling in neurons of the substantia nigra pars compacta and the possible involvement of PD-related proteins in the control of Ca 2+ homeostasis will be discussed in this review. 相似文献
7.
Recently, numerous microRNAs (miRNAs) have been considered as key players in the regulation of neuronal processes. The purpose of the present study is to explore the effect of miR-25 on hippocampal neuron injury in Alzheimer's disease (AD) induced by amyloid β (Aβ) peptide fragment 1 to 42 (Aβ1-42) via Kruppel-like factor 2 (KLF2) through the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. A mouse model of AD was established through Aβ1-42 induction. The underlying regulatory mechanisms of miR-25 were analyzed through treatment of miR-25 mimics, miR-25 inhibitors, or small interfering RNA (siRNA) against KLF2 in hippocampal tissues and cells isolated from AD mice. The targeting relationship between miR-25 and KLF2 was predicted using a target prediction program and verified by luciferase activity determination. MTT assay was used to evaluate the proliferative ability and flow cytometry to detect cell cycle distribution and apoptosis. KLF2 was confirmed as a target gene of miR-25. When the mice were induced by Aβ1-42, proliferation was suppressed while apoptosis was promoted in hippocampal neurons as evidenced by lower levels of KLF2, Nrf2, haem oxygenase, glutathione S transferase α1, glutathione, thioredoxin, and B-cell lymphoma-2 along with higher bax level. However, such alternations could be reversed by treatment of miR-25 inhibitors. These findings indicate that miR-25 may inhibit hippocampal neuron proliferation while promoting apoptosis, thereby aggravating hippocampal neuron injury through downregulation of KLF2 via the Nrf2 signaling pathway. 相似文献
9.
Alzheimer’s disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed much light on the mechanisms underlying this “pre-clinical” stage, enabling the identification and validation of new therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically, genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of the impact of pathology and novel therapeutics on cognitive outcomes. 相似文献
10.
The present study aimed to investigate whether hyperbaric oxygen preconditioning (HBO-PC) could ameliorate hypoxia–ischemia brain damage (HIBD) by an increase of Nrf2 expression. P7 Sprague-Dawley rats (aged 7 d, n?=?195) were used in two in vivo experiments, including BO-PC exposure experiments in non-HIBD models and treatment experiments in HIBD models. 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl Staining, and TUNEL staining were performed. And expressions of Nrf2, HO-1, and GSTs were measured. For in vitro studies, oxygen–glucose deprivation cells were established. Morphological and apoptotic staining and gene silencing of Nrf2 by siRNA transfection were investigated. For exposure experiments, HBO-PC for longer time increased the expression of Nrf2 significantly. And for treatment experiments, HBO-PC treatment significantly decreased infarction area, lessened neuronal injury, reduced apoptosis, and increased both the expression of Nrf2 and activities of its downstream proteins. Cytology tests confirmed effects of HBO-PC treatments. Besides, Nrf2 siRNA significantly reduced protective effects of HBO-PC. These observations demonstrated that an up-regulation of Nrf2 by HBO-PC might play an important role in the generation of tolerance against HIBD. 相似文献
11.
BackgroundAlthough the genetic cause for Huntington’s disease (HD) has been known for over 20 years, the mechanisms that cause the neurotoxicity and behavioral symptoms of this disease are not well understood. One hypothesis is that N-terminal fragments of the HTT protein are the causative agents in HD and that peptide sequences adjacent to the poly-glutamine (Q) repeats modify its toxicity. Here we test the function of the N-terminal 17 amino acids (N17) in the context of the exon 1 fragment of HTT in a novel, inducible zebrafish model of HD.ResultsDeletion of N17 coupled with 97Q expansion (mHTT-ΔN17-exon1) resulted in a robust, rapidly progressing movement deficit, while fish with intact N17 and 97Q expansion (mHTT-exon1) have more delayed-onset movement deficits with slower progression. The level of mHTT-ΔN17-exon1 protein was significantly higher than mHTT-exon1, although the mRNA level of each transgene was marginally different, suggesting that N17 may regulate HTT protein stability in vivo. In addition, cell lineage specific induction of the mHTT-ΔN17-exon1 transgene in neurons was sufficient to recapitulate the consequences of ubiquitous transgene expression. Within neurons, accelerated nuclear accumulation of the toxic HTT fragment was observed in mHTT-ΔN17-exon1 fish, demonstrating that N17 also plays an important role in sub-cellular localization in vivo.ConclusionsWe have developed a novel, inducible zebrafish model of HD. These animals exhibit a progressive movement deficit reminiscent of that seen in other animal models and human patients. Deletion of the N17 terminal amino acids of the huntingtin fragment results in an accelerated HD-like phenotype that may be due to enhanced protein stability and nuclear accumulation of HTT. These transgenic lines will provide a valuable new tool to study mechanisms of HD at the behavioral, cellular, and molecular levels. Future experiments will be focused on identifying genetic modifiers, mechanisms and therapeutics that alleviate polyQ aggregation in the nucleus of neurons. 相似文献
13.
BackgroundTraditionally, seeds of Herpetospermum pedunculosum were used to treat liver disease or cholepathy. Up to date, their protecting effect against cholestasis was remain unclarified. PurposeTo investigate the efficacy, possible mechanisms, and active constituents of the ethyl acetate extract from the seeds of Herpetospermum pedunculosum (HPEAE), studies were carried out using cholestasis rat model induced by α-naphthylisothiocyanate (ANIT). MethodsMale rats were intragastrically treated with HPEAE (100, 200 or 400 mg/kg) once a day for 7 days and were modeled with ANIT (60 mg/kg). The levels of serum indicators, bile flow, and histopathology were evaluated. Indices of oxidative stress and inflammatory mediators were detected using the enzyme-linked immunosorbent assay. Western blotting method was employed for analyzing the protein levels in the signal pathways of farnesoid X receptor (FXR), kelch ech associating protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) and nuclear factor κB (NF- κB). The chemical compositions of HPEAE was analyzed by HPLC, and partially chemical components of HPEAE were identified by comparisons of their retention times with the standards. The FXR agonistic activity of the identified compounds was evaluated in l-02 cells induced by guggulsterone using a high-content screening system. ResultsThe cholestasis caused by ANIT can be significantly ameliorated by restoring the liver function indexes of alanine transaminase, aspartate transaminase, alkaline phosphatase, gamma-glutamyltransferase, total bilirubin, direct bilirubin and total bile acid, which are dose-dependent, as well as pathological liver injury and bile flow. Mechanical studies suggested that HPEAE can activate the expression of FXR and then up regulate its downstream proteins (multidrug resistance-associated protein 2, bile salt export pump and Na+/taurocholate cotransporting polypeptide). Moreover, the levels of the active oxygen index glutathione, superoxide dismutase, glutathione peroxidase, catalase and malondialdehyde were markedly restored by treatment with HPEAE. Western blotting further confirmed that HPEAE up regulated the expression of quinone oxidoreductase 1, heme oxygenase 1 and Keap1, lowered the expression of Nrf2 and reduced oxidative stress. HPEAE also up regulated P-glycoprotein 65, phosphorylated P-glycoprotein 65 and inhibitor of NF- κB kinase α expression, down regulated inhibitor of NF- κB (I κB), restored inflammatory mediator tumor necrosis factor- α, interleukin-1 β (IL-1 β), IL-6 and IL-10, and reduced inflammatory response. Fifteen compounds were identified (12 lignans and 3 coumarins). Among them, five lignans exhibited the significant FXR agonistic activity in vitro. ConclusionHPEAE may alleviate the cholestasis and liver injury caused by ANIT in rats by activating FXR, as well as suppressing the Keap1/Nrf2 and NF- κB signaling pathways and lignans may be its main active components. 相似文献
16.
Methotrexate (MTX) is a chemotherapeutic agent widely used to treat a variety of tumors. Nonetheless, MTX-induced hippocampal neurotoxicity is a well-defined dose-limiting adverse effect that limits clinical utility. Proinflammatory cytokine production and oxidative stress are possible mechanisms for MTX-induced neurotoxicity. Buspirone (BSP), a partial agonist of the 5-HT1a receptor (5-HT1aR), has emerged as an anxiolytic drug. BSP has been shown to possess antioxidant and anti-inflammatory effects. The current study investigated BSP's potential anti-inflammatory and antioxidant effects in attenuating MTX-induced hippocampal toxicity. Rats received either BSP (1.5 mg/kg) orally for 10 days and MTX (20 mg/kg) i.p. on Day 5. BSP administration markedly protected hippocampal neurons from drastic degenerated neuronal changes induced by MTX. BSP significantly attenuated oxidative injury by downregulating Kelch-like ECH-associated protein 1 expression while potently elevating hippocampal Nrf2, heme oxygenase-1, and peroxisome proliferator-activated receptor expression. BSP dampened inflammation by reducing NO 2−, tumor necrosis factor-alpha, IL-6, and interleukin 1 beta levels mediated by downregulating NF-κB and neuronal nitric oxides synthase expression. Moreover, BSP potently counteracted hippocampal pyroptosis by downregulating NLRP3, ASC, and cleaved-caspase-1 proteins. Therefore, BSP may represent a promising approach to attenuate neurotoxicity in patients receiving MTX. 相似文献
17.
Brown adipose tissue (BAT) is thermogenic, expressing high levels of uncoupling protein-1 to convert nutrient energy to heat energy, bypassing ATP synthesis. BAT is a promising therapeutic target for treatment of obesity and type 2 diabetes since it converts fatty acids into heat but mechanisms controlling brown adipogenesis remain unclear. Knockdown of acetyl-Coenzyme A acetyltransferase 1 (ACAT1) in C3H10T1/2 cells suppressed brown adipocyte maturation during the current study and ACAT1 overexpression promoted brown adipocyte maturation. The downstream target of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1-α (PGC1α), was involved in the action of ACAT1 on brown adipocyte maturation. ACAT1 overexpression enhanced AMPK phosphorylation and promoted PGC1α expression. It is suggested that ACAT1 promotes brown adipocyte maturation by activating the AMPK-PGC1α signaling pathway. 相似文献
18.
ABSTRACTThe recent Research Framework proposed by the US National Institute on Aging and the Alzheimer’s Association (NIA-AA) recommends that Alzheimer’s disease be defined by its specific biology rather than by non-specific neurodegenerative and syndromal features. By affirming markers of abnormal Aβ and tau proteins as the essential pathobiological signature of Alzheimer’s disease, the Framework tacitly reinforces the amyloid (Aβ) cascade as the leading theory of Alzheimer pathogenesis. In light of recent evidence that the cascade is driven by the misfolding and templated aggregation of Aβ and tau, we believe that an empirically grounded Standard Model of Alzheimer’s pathogenesis is within reach. A Standard Model can clarify and consolidate existing information, contextualize risk factors and the complex disease phenotype, identify testable hypotheses for future research, and pave the most direct path to effective prevention and treatment. 相似文献
20.
Friedreich׳s ataxia is the most important recessive ataxia in the Caucasian population. Loss of frataxin expression affects the production of iron–sulfur clusters and, therefore, mitochondrial energy production. One of the pathological consequences is an increase of iron transport into the mitochondrial compartment leading to a toxic accumulation of reactive iron. However, the mechanism underlying this inappropriate mitochondrial iron accumulation is still unknown. Control and frataxin-deficient flies were fed with an iron diet in order to mimic an iron overload and used to assess various cellular as well as mitochondrial functions. We showed that frataxin-deficient flies were hypersensitive toward dietary iron and developed an iron-dependent decay of mitochondrial functions. In the fly model exhibiting only partial frataxin loss, we demonstrated that the inability to activate ferritin translation and the enhancement of mitochondrial iron uptake via mitoferrin upregulation were likely the key molecular events behind the iron-induced phenotype. Both defects were observed during the normal process of aging, confirming their importance in the progression of the pathology. In an effort to further assess the importance of these mechanisms, we carried out genetic interaction studies. We showed that mitoferrin downregulation improved many of the frataxin-deficient conditions, including nervous system degeneration, whereas mitoferrin overexpression exacerbated most of them. Taken together, this study demonstrates the crucial role of mitoferrin dysfunction in the etiology of Friedreich׳s ataxia and provides evidence that impairment of mitochondrial iron transport could be an effective treatment of the disease. 相似文献
|