首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis – TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can also have a beneficial anti-fibrotic role depending in particular on the stage of the pathology. Chemokines play an important role in monocyte extravasation in the inflammatory process. CCL2 has already been shown to be involved in the development of TIF but CCL7, a close relative of CCL2 and able to bind to similar receptors, has not been studied in renal disease. We therefore studied chemokine CCL7 in a model of unilateral ureteral obstruction (UUO)-induced TIF. We observed that the role of CCL7 differs depending on the stage of the pathology. In early stages (0–8 days), CCL7 deficient (CCL7-KO) mice displayed attenuated TIF potentially involving two mechanisms: an early (0–3 days) decrease of inflammatory cell infiltration followed (3–8 days) by a decrease in tubular ECM production independent of inflammation. In contrast, during later stages of obstruction (10–14 days), CCL7-KO mice displayed increased TIF which was again associated with reduced inflammation. Interestingly, the switch between this anti- to profibrotic effect was accompanied by an increased influx of immunosuppressive regulatory T cells. In conclusion, these results highlight for the first time a dual role for CCL7 in the development of renal TIF, deleterious in early stages but beneficial during later stages.  相似文献   

2.
Summary The pancreatic acinar cell surfaces have been studied by SEM with a dissection technique and correlated with results obtained by TEM. The SEM results demonstrate characteristic arrangement of microplicae which in some areas are densely packed.In many areas, the microplicae are distributed in such a manner that they create zones with typical geometrical shapes and show a relatively smooth surface.These smooth areas may coincide, as indicated by correlated TEM results, with the limits of intimate contact between adjacent acinar cells which, in turn, represent part of the junctional complex. Another aspect revealed by these SEM preparations concerns the presence of groups of densely packed microplicae, arranged in regular rows and distributed along some grooves and/or infoldings of the cellular surface. On the basis of SEM and TEM information, it is likely that these structures correspond to intercellular (and possibly, in some cases, intracellular) canaliculi which topographically form a kind of extensive microlabyrinthine arrangement running along all the cell sides.One final point revealed by fractured samples concerns the finding of spherical zymogen droplets within the vesicles of the Golgi complex. Because in many scanning images these vesicles appear connected by small openings, it is suggested that they may represent a system of intercommunicating chambers (vacuoles) through which the zymogen droplets can be continuously accumulated and discharged into the acinar lumen.  相似文献   

3.
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

4.
《Biotechnic & histochemistry》2013,88(5-6):291-293
Following staining with hematoxylin and eosin Y, paraffin sections of mouse pancreas were examined by transmitted light, epifluorescence and confocal laser scanning microscopy. Light microscopy revealed that the nuclei of pancreatic acinar cells were located basally, while the apices of the cells appeared eosinophilic, although the secretory granules were difficult to visualize. Under violet-blue light excitation, the zymogen granules at the apices of the acinar cells showed strong yellowish fluorescence; the other part of the cytoplasm was only faintly fluorescent and the nuclei and the supporting tissues were nonfluorescent. Confocal laser scanning microscopy resulted in clear pictures of the zymogen granules and their distribution within the cell. The fluorescent emission of zymogen granules was certainly the result of eosin Y staining, because hematoxylin is not a fluorochrome and the zymogen granules are not autofluorescent. Staining with eosin Y alone, however, did not result in clear fluorescent images of zymogen granules or any other cellular structures. Our observation shows that the fluorescence emission of eosin Y allows easy and precise recognition of zymogen granules of pancreatic cells.  相似文献   

5.
Members of the aquaporin (AQP) water channel family are widely distributed in various tissues and contribute to the water permeability of epithelial and endothelial cells. Currently 11 members of the AQP family (AQP0-10) have been reported in mammals. Here we report the identification of AQP12, which we found by performing a BLAST program search. Northern blot analysis revealed that AQP12 was specifically expressed in the pancreas. Further analysis by in situ hybridization and RT-PCR studies showed that AQP12 was selectively localized in the acinar cells of the pancreas. To analyze the cellular localization and function of AQP12, we expressed AQP12 in Xenopus oocytes and cultured mammalian cells. Immunocytochemistry revealed that AQP12 was not targeted to the plasma membrane. The selective localization of AQP12 in pancreatic acinar cells and possibly in the intracellular organelles suggests a role of AQP12 in digestive enzyme secretion such as maturation and exocytosis of secretory granules.  相似文献   

6.
Summary Subcellular structures of pancreatic acinar cells were examined at six evenly spaced time points in the 24-h period (light cycle: 06.00 h–18.00 h) in four Wistar male rats at each time point. At each sampling point, the area and circumference of acinar cell bodies and the area, number and circumference of their cytoplasmic organelles were measured using a semiautomatic computer system for morphometry and a point-counting method.The area, number and circumference-area ratio of the cytoplasmic organelles were subject to strong circadian variations, and the cellular area and circumference exhibited weak circadian variations. Variation pattern of the cytoplasmic organelles suggested an intracellular route for secretory proteins during a 24-h span. From the results it was possible to divide the 24-h period into three stages. 1. The resting or protein synthetic stage (00.00 h to 08.00h): the area of the rough surfaced endoplasmic reticulum (rER) was strongly increased, and that of zymogen granules was clearly decreased. 2. The granule accumulation stage (08.00h to 16.00h): the area of the rER was markedly decreased; that of zymogen granules was increased. 3. The secretion stage (16.00 h to 00.00): as a result of the release of zymogen granules from the acinar cell, the area of zymogen granules decreased, and that of the rER increased. The relationship between the area of the rER and zymogen granules varied in a reciprocal manner. Other cytoplasmic organelles, namely the Golgi complex, condensing vacuoles, mitochondria and lysosomes also varied prominently during the 24-h span, corresponding to variations in the rER and zymogen granules.  相似文献   

7.
The monoclonal antibody PC10 raised against the proliferating cell nuclear antigen (PCNA) was used to study acinar cell replication in the pancreas of rats under different functional conditions. In Western blots, the antibody recognized a single band of 37 kDa in pancreatic homogenates indicating its specificity in this particular species and organ. Three conditions of growth were chosen for immunohistochemical analysis: pancreatic preand postnatal development, pancreatic regeneration after injury, and cholecystokinin-stimulated acinar cell proliferation. The time course of acinar cell replication under each condition was the same as that obtained after tritiated thymidine incorporation with subsequent autoradiography, indicating that the percentage of PCNA-positive cells reflects the pool of cycling cells in the models investigated. However, the absolute number of PCNA-positive cells was two to ten times higher than comparable labeling indices from 3H-thymidine autoradiography. This finding might reflect the half life of PCNA, which exceeds the duration of the S-phase. Thus, PCNA-positive cells not only represent S-phase cells, but also cells that have recently completed the cell cycle.  相似文献   

8.
Summary Direct cell to cell movement of the fluorescent dye Lucifer Yellow CH (457 daltons) in exocrine acinar tissue is demonstrated by direct observation of living mouse pancreatic segments. Electrical uncoupling of pancreatic acinar cells by local application of a high concentration of acetylcholine significantly restricts cell to cell passage of the fluorescent dye. This result shows that a secretagogue can control direct movement of organic molecules between cells through junctional channels.  相似文献   

9.
Summary The development of the submandibular gland of the mouse was studied by means of electron microscopy, from the 14th day of gestation up to birth. In the first two days the acini are solid and their cells contain polyribosomes and a few lamellae of endoplasmic reticulum. Beginning with the 16th day secretory granules appear and rapidly fill an increasing number of cells. The different electron density of the granules makes it possible to distinguish 1. two types of granules, dense and pale, and sometimes intermediate ones, 2. polymorphic granules. The latter consists of electron dense and electron pale parts combined in different configurations. The possible significance of the various types of granules is discussed.  相似文献   

10.
Potential biological markers for cystic fibrosis (CF) lung disease were identified by comparative proteomics profiling of nasal cells from deletion of phenylalanine residue 508 (F508del)-homozygous CF patients and non-CF controls. From the non-CF 2-DE gels, 65 spots were identified by MS, and a reference 2-DE map was thus established. The majority of those correspond to ubiquitously expressed proteins. Consistent with the epithelial origin of this tissue, some of the identified proteins are epithelial markers (e.g. cytokeratins, palate lung and nasal epithelium clone protein (PLUNC), and squamous cell carcinoma antigen 1). Comparison of this protein profile with the one similarly obtained for CF nasal cells revealed a set of differentially expressed proteins. These included proteins related to chronic inflammation and some others involved in oxidative stress injury. Alterations were also observed in the levels of cytoskeleton proteins, being probably implicated with cytoskeleton organization changes described to occur in CF-airways. Lower levels were found for some mitochondrial proteins suggesting an altered mitochondrial metabolism in CF. Differential expression was also found for two more enzymes that have not been previously associated to CF. Further studies will clarify the involvement of such proteins in CF pathophysiology and whether they are targets for CF therapy.  相似文献   

11.
12.
Multiple tissue niches in the human body are now recognised to harbour stem cells. Here, we have asked how different adult stem cell populations, isolated from two ontogenetically distinct human organs (skin, pancreas), actually are with respect to a panel of standard markers/characteristics. Here we show that an easily accessible adult human tissue such as skin may serve as a convenient source of adult stem cell-like populations that share markers with stem cells derived from an internal, exocrine organ. Surprisingly, both, human pancreas- and skin-derived stem/progenitor cells demonstrate differentiation patterns across lineage boundaries into cell types of ectoderm (e.g. PGP 9.5+ and GFAP+), mesoderm (e.g. alpha-SMA+) and entoderm (e.g. amylase+ and albumin+). This intriguing differentiation capability warrants systemic follow-up, since it raises the theoretical possibility that an adult human skin-derived progenitor cell population could be envisioned for possible application in cell replacement therapies.  相似文献   

13.
Fibroblasts release prostaglandins and express a range of prostanoid receptors. However the importance of prostaglandins in fibroblast biology have not been fully explored. Our studies showed that the prostaglandin metabolite PGI2 blocks the activation of fibroblasts, antagonising the induction of Ras/MEK/ERK signalling by TGFβ. Endogenous PGI2 acts so as to limit the activation of fibroblasts following tissue injury. By contrast PGE2 induced in injured tissues or disease states may promote recruitment of inflammatory cells and lead to secondary activation of fibroblasts. The effects of PGI2 on cell signaling could be manipulated to inhibit fibrosis in patients.  相似文献   

14.
A longstanding controversy exists regarding the cellular origin of myofibroblasts in tissue fibrosis. A recent study by Hung and colleagues (Am J Respir Crit Care Med 188(7):820–830, 2013) used genetic fate mapping of FoxD1 embryonic progenitor cells to show a major and direct contribution of mesenchymal cells to fibrogenesis in the lung. Future studies using FoxD1-specific inducible knockout models of pro-fibrotic genes such as CCN2 will be valuable for determining anti-fibrotic drug targets. The emergence of pericyte-like myofibroblast precursors also raises the question of whether mesenchymal stem cells in various niches contribute to fibrotic responses throughout the body.  相似文献   

15.
Accumulating evidence suggests that activated pancreatic stellate cells (PSC) play an important role in chronic pancreatitis (CP), and inhibition of the activated PSC is considered as a potential strategy for the treatment and prevention of CP. Herein, we disclose our findings that apigenin and its novel analogues suppress the proliferation and induce apoptosis in PSC, which reduce the PSC-mediated fibrosis in CP. Chemical modifications of apigenin have been directed to build a focused library of O-alkylamino-tethered apigenin derivatives at 4′-O position of the ring C with the attempt to enhance the potency and drug-like properties including aqueous solubility. A number of compounds such as 14, 16, and 24 exhibited potent antiproliferative effects as well as improved aqueous solubility. Intriguingly, apigenin, new analogues 23 and 24 displayed significant efficacy to reduce pancreatic fibrosis even at a low dose of 0.5 mg/kg in our proof-of-concept study using a preclinical in vivo mouse model of CP.  相似文献   

16.
Fibrosis is the hyperactivation of fibroblasts that results in excessive accumulation of extracellular matrix, which is involved in numerous pathological changes and diseases. Adipose-derived stem cells (ASCs) are promising seed cells for regenerative medicine due to their bountiful source, low immunogenicity and lack of ethical issues. Their anti-fibrosis, immunomodulation, angiogenesis and other therapeutic effects have made them suitable for treating fibrosis-related diseases. Here, we review the literature on ASCs treating fibrosis, elaborate and discuss their mechanisms of action, changes in disease environment, ways to enhance therapeutic effects, as well as current preclinical and clinical studies, in order to provide a general picture of ASCs treating fibrotic diseases.  相似文献   

17.
Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.  相似文献   

18.
Background: We studied dendritic cell (DC) function in patients affected by pancreatic carcinoma, and the possibility of obtaining DC adequate for immunological treatment modalities. Methods: Leucocytes were isolated from buffy coats obtained by autotransfusion of six patients undergoing pancreatico-duodenectomy. The leucocytes were cryopreserved and, after thawing, were purified by density gradient and/or plastic adhesion. They were then cultured in vitro in cytokine-enriched medium (granulocyte/macrophage-colony-stimulating factor + interleukin-4) with different sources of serum: 10% fetal calf serum (FCS), 2% autologous human serum or 2% pooled human AB serum. Results: The DC obtained were identical to those from healthy donors in terms of phenotype, antigen uptake capacity, capacity for antigen presentation and their capacity to mature after exposure to stimuli like CD40L. DC differentiated in human serum demonstrated more mature behaviour than did DC cultured in FCS but, after exposure to CD40L, this difference disappeared. In one patient soluble factors in serum were able to inhibit the capacity of DC to stimulate T cells. Conclusion: It's possible to obtain DC from autotransfusion of patients with pancreatic carcinoma: these cells do not show evident quantitative or qualitative alterations, are able to present soluble antigen even when cultured in the presence of human serum and may be used in immunological tumour treatments. Received: 18 May 2000 / Accepted: 27 July 2000  相似文献   

19.
 In order to investigate the cellular mechanisms involved in amylase release in response to stimulation with short-chain fatty acids, changes in intracellular calcium concentration ([Ca2+]i), membrane current and amylase release were measured in pancreatic acinar cells of sheep. Both octanoate and acetylcholine raised [Ca2+]i in acinar cells in a concentration-dependent manner. The rise in [Ca2+]i in response to the stimulation with octanoate (10 mmol ⋅ l-1) was reduced in a medium without CaCl2, but was markedly enhanced by reintroduction of CaCl2 into the medium up to 2.56 mmol ⋅ l-1. Perfusion of the cells with a medium containing octanoate (5 mmol ⋅ l-1) or acetylcholine (0.5 μmol ⋅ l-1) immediately raised inward current across the cell membrane at a holding-membrane potential of −30 mV. The inward current became greater as the holding potential became more negative. The equilibrium potential was 1.8 mV and 3.9 mV for octanoate and acetylcholine, respectively, being consistent with that for Cl-. Although intracellular application of octanoate through a patch-clamp pipette also raised inward current after several minutes in some cells (4 out of 12), this possibility was significantly smaller than that for extracellular application. In other cells, even though the intracellular application of octanoate did not cause an increase in current, it always caused responses immediately after introduction of the fatty acid into the medium. Stimulation with fatty acid as well as acetylcholine raised amylase release in a concentration-dependent manner in cells dispersed from tissue segments with crude collagenase and trypsin inhibitor. Without trypsin inhibitor, crude collagenase significantly and selectively reduced the octanoate (10 mmol ⋅ l-1)-induced amylase release. Dispersion with crude collagenase and trypsin significantly reduced both responses induced by octanoate and acetylcholine (5.5 μmol ⋅ l-1). We conclude that fatty acids and acetylcholine increase [Ca2+]i, which consequently evokes a rise in transmembrane ion (Cl-) conductance and amylase release, and that trypsin-sensitive protein(s) in the cell membrane are involved in secretory processes activated by stimulation with fatty acids in ovine pancreatic acinar cells. Accepted: 14 May 1996  相似文献   

20.
Acute pancreatitis is a serious and sometimes fatal inflammatory disease of the pancreas without any reliable treatment or imminent cure. In recent years, impaired metabolism and cytosolic Ca(2+) ([Ca(2+)](i)) overload in pancreatic acinar cells have been implicated as the cardinal pathological events common to most forms of pancreatitis, regardless of the precise causative factor. Therefore, restoration of metabolism and protection against cytosolic Ca(2+) overload likely represent key therapeutic untapped strategies for the treatment of this disease. The plasma membrane Ca(2+)-ATPase (PMCA) provides a final common path for cells to "defend" [Ca(2+)](i) during cellular injury. In this paper, we use fluorescence imaging to show for the first time that insulin treatment, which is protective in animal models and clinical studies of human pancreatitis, directly protects pancreatic acinar cells from oxidant-induced cytosolic Ca(2+) overload and inhibition of the PMCA. This protection was independent of oxidative stress or mitochondrial membrane potential but appeared to involve the activation of Akt and an acute metabolic switch from mitochondrial to predominantly glycolytic metabolism. This switch to glycolysis appeared to be sufficient to maintain cellular ATP and thus PMCA activity, thereby preventing Ca(2+) overload, even in the face of impaired mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号