首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cellular signalling》2014,26(3):564-569
Gastric cancer remains the main cause of cancer related deaths all over the world, and upregulated COX2 is a key player in its development. The mechanism as to how COX2 is regulated during the gastric cancer development is largely unknown. In this study, we found that the expression of COX2 was closely correlated with NF-κB activity. Strikingly, NF-κB activity was not absolutely consistent with its nuclear localization. Especially, in some cancer cell lines, such as MKN28, there were abundant nuclear localized NF-κB, while NF-κB luciferase activity in this cell line was relatively low. Furthermore, FOXP3 was found to be abundantly expressed in these cells. When the nuclear localized NF-κB expression was adjusted with the expression of FOXP3, it then correlated well with NF-κB activity. Molecularly, increased FOXP3 expression can interact with NF-κB and thus repress its activity. Knockdown of FOXP3 could increase NF-κB activity, COX2 expression, and cell migration. Taken together, our study revealed that function of FOXP3 as a negative regulator of NF-κB activity and thus plays a tumor suppressor role by reducing cell metastasis.  相似文献   

2.
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Genetic predisposition and immune dysfunction are involved in the pathogenesis of PD. Notably, peripheral inflammatory disorders and neuroinflammation are associated with PD neuropathology. Type 2 diabetes mellitus (T2DM) is associated with inflammatory disorders due to hyperglycaemia-induced oxidative stress and the release of pro-inflammatory cytokines. Particularly, insulin resistance (IR) in T2DM promotes the degeneration of dopaminergic neurons in the substantia nigra (SN). Thus, T2DM-induced inflammatory disorders predispose to the development and progression of PD, and their targeting may reduce PD risk in T2DM. Therefore, this narrative review aims to find the potential link between T2DM and PD by investigating the role of inflammatory signalling pathways, mainly the nuclear factor kappa B (NF-κB) and the nod-like receptor pyrin 3 (NLRP3) inflammasome. NF-κB is implicated in the pathogenesis of T2DM, and activation of NF-κB with induction of neuronal apoptosis was also confirmed in PD patients. Systemic activation of NLRP3 inflammasome promotes the accumulation of α-synuclein and degeneration of dopaminergic neurons in the SN. Increasing α-synuclein in PD patients enhances NLRP3 inflammasome activation and the release of interleukin (IL)-1β followed by the development of systemic inflammation and neuroinflammation. In conclusion, activation of the NF-κB/NLRP3 inflammasome axis in T2DM patients could be the causal pathway in the development of PD. The inflammatory mechanisms triggered by activated NLRP3 inflammasome lead to pancreatic β-cell dysfunction and the development of T2DM. Therefore, attenuation of inflammatory changes by inhibiting the NF-κB/NLRP3 inflammasome axis in the early T2DM may reduce future PD risk.  相似文献   

3.
4.
The Gram-negative bacterial pathogen Yersinia delivers six effector proteins into the host cells to block the host innate immune response. One of the effectors, YopT, is a potent cysteine protease that causes the disruption of the actin cytoskeleton to inhibit phagocytosis of the pathogen; however, its molecular mechanism and relevance to pathogenesis need further investigation. In this report, we show that RIG-I is a novel target of the YopT protein. Remarkably, YopT interacts with RIG-I and inhibits rat liver homogenate-mediated nuclear factor-κB and interferon regulatory factor-3 activation. Further studies revealed a YopT-dependent increase in the K48-polymerized ubiquitination of RIG-I. These findings suggest that YopT negatively regulates RIG-I-mediated cellular antibacterial response by targeting RIG-I.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Gambogic acid (GB) is an important anti-cancer drug candidate, but the target protein by which it exerts its anti-cancer effects has not been identified. This study is the first to show that GB inhibits heat shock protein 90 (Hsp90) and down-regulates TNF-α/NF-κB in HeLa cells. The effects of GB on Hsp90 were studied by characterizing its physical interactions with Hsp90 upon binding, the noncompetitive inhibition of Hsp90 ATPase activity, and the degradation of Hsp90 client proteins (i.e., Akt, IKK) in HeLa cells. GB seems to bind to the N-terminal ATP-binding domain of Hsp90. Additionally, GB suppresses the activation of TNF-α/NF-κB and decreases XIAP expression levels and the ratio of Bcl-2/Bax, which in turn induces HeLa cell apoptosis. Thus, GB represents a promising therapeutic agent for cancer; it may also be useful as a probe to increase understanding of the biological functions of Hsp90.  相似文献   

12.
BackgroundDespite advances in treatment, ovarian cancer is the most lethal gynecologic malignancy. Therefore significant efforts are being made to develop novel strategies for the treatment of ovarian cancer. Salinomycin has been shown to be highly effective in the elimination of cancer stem cells both in vitro and in vivo. The present study focused on investigating important cell signaling molecules such as Akt and NF-κB during salinomycin-induced apoptosis in cisplatin resistant ovarian cancer cells (A2780cis).MethodsMTT assay was performed to determine cell viability. Flow cytometry and DNA fragmentation assay were performed to analyze the effect on cell cycle and apoptosis. The expression of apoptosis related proteins was evaluated by Western blot analysis.ResultsThe cell viability was significantly reduced by salinomycin treatment in a dose dependent manner. The flow cytometry result showed an increase in sub-G1 phase. Salinomycin inhibited the nuclear transportation of NF-κB, and downregulated Akt expression. Declined Bcl-2, activation of caspase-3 and increased PARP cleavage triggered apoptosis. Moreover, DNA fragmentation assay also revealed apoptotic induction.ConclusionThe result suggested that salinomycin-induced apoptosis in A2780cis was associated with inhibition of Akt/NF-κB. It may become a potential chemotherapeutic agent for the cisplatin resistant ovarian cancer therapy.  相似文献   

13.
AimsKolaviron, a bioflavonoid isolated from the seeds of Garcinia kola has been reported to possess anti-inflammatory, antioxidant, antigenotoxic and hepatoprotective activities in model systems via multiple biochemical mechanisms. The present study investigated the possible molecular mechanisms underlying the hepatoprotective effects of kolaviron.Main methodsBiomarkers of hepatic oxidative injury, histological and immunohistochemical techniques were used. In addition, the protein expression levels of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) were evaluated by western blotting while DNA-binding activities of nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1) were determined by electrophoretic mobility shift assay.Key findingsKolaviron administered orally at doses of 100 and 200 mg/kg for 7 days significantly lowered the activities of serum transaminases and γ-glutamyl tranferase induced by single intraperitoneal administration of dimethyl nitrosamine (DMN) (20 mg/kg) and preserved the integrity of the hepatocytes. Also, kolaviron at both doses reduced the DMN induced elevated hepatic levels of malondialdehyde and reversed DMN mediated decrease in hepatic glutathione. The hepatoprotective effect of kolaviron was compared to that of curcumin, an established hepatoprotective agent. Kolaviron inhibited the DMN induced expression of COX-2 and iNOS. Immunohistochemical staining of rat liver verified the inhibitory effect of kolaviron on DMN-induced hepatic COX-2 expression. Furthermore, kolaviron abrogated DMN induced binding activity of NF-κB as well as AP-1.SignificanceThe ability of kolaviron to inhibit COX-2 and iNOS expression through down regulation of NF-κB and AP-1 DNA binding activities could be a mechanism for the hepatoprotective properties of kolaviron.  相似文献   

14.
15.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

16.
17.
Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. Dalesconols B, also termed as TL2, is a newly found polyketide from a mantis-associated fungus and has been reported to exert potent immunosuppressive effects. In the present study, the anti-inflammatory effects of TL2 was investigated in lipopolysaccharide (LPS)-treated BV2 microglia and primary microglia cells. Our observations indicated that pretreatment with TL2 significantly inhibited the production of NO and PGE2 and suppressed the expression of pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), COX-2, TNF-α, IL-1β, IL-6, MCP-1 and MIP-1α in LPS-stimulated BV2 microglia. The nuclear translocation of NF-κB and the phosphorylation level of Akt, p38 and JNK MAP kinase pathways were also inhibited by TL2 in LPS-treated BV2 microglia. Moreover, TL2 also decreased Aβ-induced production of TNF-α, IL-1β and IL-6 in BV2 microglia. Additionally, TL2 protected primary cortical neurons against microglia-mediated neurotoxicity. Overall, our findings suggested that TL2 might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation.  相似文献   

18.
In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.  相似文献   

19.
20.

Objectives  

Natural products have played a significant role in drug discovery and development. Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been suggested to connect with various inflammatory diseases. In this study, we explored the anti-inflammatory potential of aciculatin (8-((2R,4S,5S,6R)-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one), one of main components of Chrysopogon aciculatis, by examining its effects on the expression and activity of iNOS and COX-2 in lipopolysaccharide (LPS)-activated macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号