首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the molecular mechanism underlying curcumin depletion of ErbB2 protein. Curcumin induced ErbB2 ubiquitination but pretreatment with proteasome inhibitors neither prevented curcumin depletion of ErbB2 protein nor further accumulated ubiquitinated ErbB2. Curcumin increased association of endogenous and ectopically expressed CHIP, a chaperone-dependent ubiquitin ligase, with ErbB2. In COS7 cells cotransfected with ErbB2 and various CHIP plasmids followed by curcumin treatment, CHIP-H260Q (a mutant lacking ubiquitin ligase activity) promoted less curcumin-induced ErbB2 ubiquitination than did wild type CHIP, and CHIP-K30A (a mutant incapable of binding Hsp90 and Hsp70) neither associated with ErbB2 nor promoted its ubiquitination. ErbB2 mutants lacking the kinase domain failed to associate with CHIP and were completely resistant to ubiquitination and depletion induced by curcumin. Finally, curcumin's Michael reaction acceptor functionality was required for both covalent association of curcumin with ErbB2 and curcumin-mediated ErbB2 depletion. These data suggest (1) that CHIP-dependent ErbB2 ubiquitination is implicated in curcumin-stimulated ErbB2 depletion, and (2) that covalent modification of ErbB2 by curcumin is the proximal signal which initiates this process.  相似文献   

2.
The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [35S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.  相似文献   

3.
Ligand-induced down-regulation controls the signaling potency of the epidermal growth factor receptor (EGFR/ErbB1). Overexpression studies have identified Cbl-mediated ubiquitinylation of EGFR as a mechanism of ligand-induced EGFR down-regulation. However, the role of endogenous Cbl in EGFR down-regulation and the precise step in the endocytic pathway regulated by Cbl remain unclear. Using Cbl-/- mouse embryonic fibroblast cell lines, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and efficient degradation of EGFR. Further analyses using Chinese hamster ovary cells with a temperature-sensitive defect in ubiquitinylation confirm a crucial role of the ubiquitin machinery in Cbl-mediated EGFR degradation. However, internalization into early endosomes did not require Cbl function or an intact ubiquitin pathway. Confocal immunolocalization studies indicated that Cbl-dependent ubiquitinylation plays a critical role at the early endosome to late endosome/lysosome sorting step of EGFR down-regulation. These findings establish Cbl as the major endogenous ubiquitin ligase responsible for EGFR degradation, and show that the critical role of Cbl-mediated ubiquitinylation is at the level of endosomal sorting, rather than at the level of internalization.  相似文献   

4.
The Cbl ubiquitin ligase has emerged as a negative regulator of receptor and non-receptor tyrosine kinases. Cbl is known to associate with the proto-oncogene product Vav, a hematopoietic-restricted Rac guanine nucleotide exchange factor, but the consequences of this interaction remain to be elucidated. Using immortalized T cell lines from Cbl(+/+) and Cbl(-/-) mice, and transfection analyses in 293T cells, we demonstrate that Vav undergoes Cbl-dependent ubiquitinylation under conditions that promote Cbl and Vav phosphorylation. Interaction with Cbl also induced the loss of phosphorylated Vav. In addition, we show that an activated Vav mutant (Vav-Y174F) is more sensitive to Cbl-dependent ubiquitinylation. We demonstrate that the Cbl-dependent ubiquitinylation of Vav requires Cbl/Vav association through phosphorylated Tyr-700 on Cbl, and also requires an intact Cbl RING finger domain. Finally, using transfection analyses in the Jurkat T cell line, we show that Cbl, but not its ubiquitin ligase mutant, can inhibit Vav-dependent signaling. Thus, our findings strongly support the role of Cbl, via its ubiquitin ligase activity, as a negative regulator of activated Vav.  相似文献   

5.
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.  相似文献   

6.
CHIP: a link between the chaperone and proteasome systems   总被引:6,自引:0,他引:6       下载免费PDF全文
CHIP, carboxy terminus of Hsc70 interacting protein, is a cytoplasmic protein whose amino acid sequence is highly conserved across species. It is most highly expressed in cardiac and skeletal muscle and brain. The primary amino acid sequence is characterized by 3 domains, a tetratricopeptide repeat (TPR) domain at its amino terminus, a U-box domain at its carboxy terminus, and an intervening charged domain. CHIP interacts with the molecular chaperones Hsc70-Hsp70 and Hsp90 through its TPR domain, whereas its U-box domain contains its E3 ubiquitin ligase activity. Its interaction with these molecular chaperones results in client substrate ubiquitylation and degradation by the proteasome. Thus, CHIP acts to tilt the folding-refolding machinery toward the degradative pathway, and it serves as a link between the two. Because protein degradation is required for healthy cellular function, CHIP's ability to degrade proteins that are the signature of disease, eg, ErbB2 in breast and ovarian cancers, could prove to be a point of therapeutic intervention.  相似文献   

7.
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.  相似文献   

8.
Xu Z  Devlin KI  Ford MG  Nix JC  Qin J  Misra S 《Biochemistry》2006,45(15):4749-4759
The heat-shock proteins Hsp70 and Hsp90 play a crucial role in regulating protein quality control both by refolding and by preventing the aggregation of misfolded proteins. It has recently been shown that Hsp70 and Hsp90 act not only in protein refolding but also cooperate with the C terminus of Hsp70 interacting protein (CHIP), a multidomain ubiquitin ligase, to mediate the degradation of unfolded proteins. We present the crystal structure of the helical linker domain and U-box domain of zebrafish CHIP (DrCHIP-HU). The structure of DrCHIP-HU shows a symmetric homodimer. The conformation of the helical linker domains and the relative positions of the helical and U-box domains differ substantially in DrCHIP-HU from those in a recently published structure of an asymmetric dimer of mammalian (mouse) CHIP. We used an in vitro ubiquitination assay to identify residues, located on two long loops and a central alpha helix of the CHIP U-box domain, that are important for interacting with the ubiquitin-conjugating enzyme UbcH5b. In addition, we used NMR spectroscopy to define a complementary interaction surface located on the N-terminal alpha helix and the L4 and L7 loops of UbcH5b. Our results provide insights into conformational variability in the domain arrangement of CHIP and into U-box-mediated recruitment of UbcH5b for the ubiquitination of Hsp70 and Hsp90 substrates.  相似文献   

9.
Parkinson's disease (PD) is a common neurodegenerative condition in which abnormalities in protein homeostasis, or proteostasis, may lead to accumulation of the protein α-synuclein (α-syn). Mutations within or multiplications of the gene encoding α-syn are known to cause genetic forms of PD and polymorphisms in the gene are recently established risk factors for idiopathic PD. α-syn is a major component of Lewy bodies, the intracellular proteinaceous inclusions which are pathological hallmarks of most forms of PD. Recent evidence demonstrates that α-syn can self associate into soluble oligomeric species and implicates these α-syn oligomers in cell death. We have previously shown that carboxyl terminus of Hsp70-interacting protein (CHIP), a co-chaperone molecule with E3 ubiquitin ligase activity, may reduce the levels of toxic α-syn oligomers. Here we demonstrate that α-syn is ubiquitinylated by CHIP both in vitro and in cells. We find that the products from ubiquitinylation by CHIP include both monoubiquitinylated and polyubiquitinylated forms of α-syn. We also demonstrate that CHIP and α-syn exist within a protein complex with the co-chaperone bcl-2-associated athanogene 5 (BAG5) in brain. The interaction of CHIP with BAG5 is mediated by Hsp70 which binds to the tetratricopeptide repeat domain of CHIP and the BAG domains of BAG5. The Hsp70-mediated association of BAG5 with CHIP results in inhibition of CHIP E3 ubiquitin ligase activity and subsequently reduces α-syn ubiquitinylation. Furthermore, we use a luciferase-based protein-fragment complementation assay of α-syn oligomerization to investigate regulation of α-syn oligomers by CHIP in living cells. We demonstrate that BAG5 mitigates the ability of CHIP to reduce α-syn oligomerization and that non-ubiquitinylated α-syn has an increased propensity for oligomerization. Thus, our results identify CHIP as an E3 ubiquitin ligase of α-syn and suggest a novel function for BAG5 as a modulator of CHIP E3 ubiquitin ligase activity with implications for CHIP-mediated regulation of α-syn oligomerization.  相似文献   

10.
Although the ubiquitin-proteasome system and the molecular chaperones are implicated to play an important role in pathogenesis of familial amyotrophic lateral sclerosis (FALS) caused by mutations in Cu/Zn-superoxide dismutase (SOD1), the mechanism underlying the causes of this fatal disease is still poorly understood. Here we found that co-chaperone CHIP (carboxyl terminus of Hsc70-interacting protein), together with molecular chaperones Hsc70/Hsp70 and Hsp90, associates with FALS-linked mutant SOD1 proteins in cultured human cells. S5a subunit of 26S proteasomes, which recognizes polyubiquitylated proteins, also interacts with mutant SOD1 proteins. Over-expression of CHIP leads to the reduction in cellular levels of mutant SOD1 as well as the suppression of cytotoxicity induced by mutant SOD1. Unusually, rather than increasing the level of poly-ubiquitylated SOD1, over-expressed CHIP alters the ubiquitylation pattern of mutant SOD1 proteins. Both down-regulation and ubiquitylation of mutant SOD1 are greatly reduced by a mutant CHIP protein lacking U-box domain. Taken together, these results suggest that co-chaperone CHIP, possibly with another E3 ligase(s), modulates the ubiquitylation of mutant SOD1 and renders them more susceptible for proteasomal degradation.  相似文献   

11.
It is notable that both the chaperone and ubiquitin-proteasome systems are required for removal of aberrant cellular proteins to ensure protein homeostasis in cells. However, the entity that links the two systems had remained elusive. Carboxyl-terminus of Hsc70 interacting protein (CHIP), originally identified as a co-chaperone of Hsc70, has both a tetratricopeptide repeat (TPR) motif and a U-box domain. The TPR motif associates with Hsc70 and Hsp90, while the U-box domain executes a ubiquitin ligase activity. Thus, CHIP is an ideal molecule acting as a protein quality-control ubiquitin ligase that selectively leads abnormal proteins recognized by molecular chaperones to degradation by the proteasome. Accumulating evidence from in vitro studies indicates that this is apparently the case. Here, we present and discuss several unresolved but critical issues related to the molecular mechanism and in vivo roles of CHIP.  相似文献   

12.
The U-box E3 ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein) binds Hsp90 and/or Hsp70 via its tetratricopeptide repeat (TPR), facilitating ubiquitination of the chaperone-bound client proteins. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. We previously reported that Ca2+/S100 proteins directly associate with the TPR proteins, such as Hsp70/Hsp90-organizing protein (Hop), kinesin light chain, Tom70, FKBP52, CyP40, and protein phosphatase 5 (PP5), leading to the dissociation of the interactions of the TPR proteins with their target proteins. Therefore, we have hypothesized that Ca2+/S100 proteins can interact with CHIP and regulate its function. GST pulldown assays indicated that Ca2+/S100A2 and S100P bind to the TPR domain and lead to interference with the interactions of CHIP with Hsp70, Hsp90, HSF1, and Smad1. In vitro ubiquitination assays indicated that Ca2+/S100A2 and S100P are efficient and specific inhibitors of CHIP-mediated ubiquitination of Hsp70, Hsp90, HSF1, and Smad1. Overexpression of S100A2 and S100P suppressed CHIP-chaperone complex-dependent mutant p53 ubiquitination and degradation in Hep3B cells. The association of the S100 proteins with CHIP provides a Ca2+-dependent regulatory mechanism for the ubiquitination and degradation of intracellular proteins by the CHIP-proteasome pathway.  相似文献   

13.
The class III receptor-tyrosine kinase Flt3 regulates normal hematopoiesis. An internal tandem duplication (ITD) in the juxtamembrane domain of Flt3 (Flt3-ITD) contributes to transformation and is associated with poor prognosis in acute myeloid leukemia. Here, we demonstrate that, as compared with wild-type Flt3 (Flt3-WT), Flt3-ITD more rapidly undergoes degradation through the proteasomal and lysosomal pathways in model hematopoietic 32D cells and in human leukemic MV4-11 cells. The Hsp90 inhibitor 17-allylaminodemethoxygeldanamycin (17-AAG) preferentially induced the polyubiquitination and proteasomal degradation of Flt3-ITD autophosphorylated on Tyr-591 in these cells. The E3 ubiquitin ligases c-Cbl and to a lesser extent Cbl-b facilitated at least partly Lys-48-linked polyubiquitination of autophosphorylated Flt3-ITD when coexpressed in 293T cells. Moreover, c-Cbl and Cbl-b facilitated degradation of Flt3-ITD in 293T cells and significantly enhanced the 17-AAG-induced decline in autophosphorylated Flt3-ITD. The enhancement of Flt3-ITD degradation was also observed in 32D cells inducibly overexpressing c-Cbl or Cbl-b. Furthermore, overexpression of loss-of-function mutants of both c-Cbl (c-Cbl-R420Q) and Cbl-b (Cbl-b-C373A) together in 32D cells retarded the degradation of autophosphorylated Flt3-ITD and significantly inhibited the 17-AAG-induced degradation of Flt3-ITD to confer the resistance to cytotoxicity of 17-AAG on these cells. These results suggest that c-Cbl as well as Cbl-b may play important roles in Hsp90 inhibitor-induced degradation of Flt3-ITD through the ubiquitin proteasome system and in regulation of the basal expression level of Flt3-ITD in leukemic cells.  相似文献   

14.
15.
The cellular level of the tumor suppressor p53 is tightly regulated through induced degradation via the ubiquitin/proteasome system. The ubiquitin ligase Mdm2 plays a pivotal role in stimulating p53 turnover. However, recently additional ubiquitin ligases have been identified that participate in the degradation of the tumor suppressor. Apparently, multiple degradation pathways are employed to ensure proper destruction of p53. Here we show that the chaperone-associated ubiquitin ligase CHIP is able to induce the proteasomal degradation of p53. CHIP-induced degradation was observed for mutant p53, which was previously shown to associate with the chaperones Hsc70 and Hsp90, and for the wild-type form of the tumor suppressor. Our data reveal that mutant and wild-type p53 transiently associate with molecular chaperones and can be diverted onto a degradation pathway through this association.  相似文献   

16.
Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of growth and differentiation, whose aberrant activation causes a number of genetic diseases including achondroplasia and cancer. Hsp90 is a specialized molecular chaperone involved in stabilizing a select set of proteins termed clients. Here, we delineate the relationship of Hsp90 and co-chaperone Cdc37 with FGFR3 and the FGFR family. FGFR3 strongly associates with these chaperone complexes and depends on them for stability and function. Inhibition of Hsp90 function using the geldanamycin analog 17-AAG induces the ubiquitination and degradation of FGFR3 and reduces the signaling capacity of FGFR3. Other FGFRs weakly interact with these chaperones and are differentially influenced by Hsp90 inhibition. The Hsp90-related ubiquitin ligase CHIP is able to interact and destabilize FGFR3. Our results establish FGFR3 as a strong Hsp90 client and suggest that modulating Hsp90 chaperone complexes may beneficially influence the stability and function of FGFR3 in disease.  相似文献   

17.
18.
Ron, the tyrosine kinase receptor for macrophage-stimulating protein is responsible for proliferation and migration of cells from different tissues. Ron can acquire oncogenic potential by single point mutations in the kinase domain, and dysregulated Ron signaling has been involved in the development of different human cancers. We have previously shown that ligand-activated Ron recruits the negative regulator c-Cbl, which mediates its ubiquitylation and degradation. Here we report that Ron is ubiquitylated also by the U-box E3 ligase C-terminal Hsc70-interacting protein (CHIP), recruited via chaperone intermediates Hsp90 and Hsc70. Gene silencing shows that CHIP activity is necessary to mediate Ron degradation upon cell treatment with Hsp90 inhibitors geldanamycins. The oncogenic Ron(M1254T) receptor escapes from c-Cbl negative regulation but retains a strong association with CHIP. This constitutively active mutant of Ron displays increased sensitivity to geldanamycins, enhanced physical interaction with Hsp90, and more rapid degradation rate. Cell growth and migration, as well as the transforming potential evoked by Ron(M1254T), are abrogated upon Hsp90 inhibition. These data highlight a novel mechanism for Ron degradation and propose Hsp90 antagonists like geldanamycins as suitable pharmacological agents for therapy of cancers where altered Ron signaling is involved.  相似文献   

19.
Her-2/neu (ErbB2) is a transmembrane tyrosine kinase and acts as a co-receptor for the other EGFR family members. It is well known that high expression of Her-2/neu is associated with a poor prognosis in breast cancer. Quercetin, a flavonoid present in many vegetables and fruits, has been studied extensively as a chemoprevention agent in several cancer models. In this study, we observed that quercetin decreased the level of Her-2/neu protein in time- and dose-dependent manners and also inhibited the downstream survival PI3K-Akt signaling pathway in Her-2/neu-overexpressing breast cancer SK-Br3 cells. We also observed that quercetin induced polyubiquitination of Her-2/neu. When the proteasome pathway was blocked by MG-132 during quercetin treatment, accumulation of the NP-40 insoluble form of Her-2/neu occurred. Interestingly, data from immunocomplex studies revealed that quercetin promoted interaction between Her-2/neu and Hsp90 which is a molecular chaperone involved in stabilization of Her-2/neu. In this condition, inhibition of Hsp90 activity by a specific inhibitor, geldanamycin (GA), or intracellular ATP depletion caused dissociation of Hsp90 from Her-2/neu and promoted ubiquitination and down-regulation of Her-2/neu protein. In addition, the carboxyl terminus of Hsc70-interacting protein (CHIP), a chaperone-dependent E3 ubiquitin ligase, played a crucial role in the quercetin-induced ubiquitination of Her-2/neu. Inhibition of tyrosine kinase activity of Her-2/neu by quercetin could indicate an lateration in the Her-2/neu structure which promotes CHIP recruitments and down-regulation of Her-2/neu. We believe that by using quercetin, new therapeutic strategies can be developed to treat Her-2/neu overexpressing cancers.  相似文献   

20.
BAG-1 is a ubiquitin domain protein that links the molecular chaperones Hsc70 and Hsp70 to the proteasome. During proteasomal sorting BAG-1 can cooperate with another co-chaperone, the carboxyl terminus of Hsc70-interacting protein CHIP. CHIP was recently identified as a Hsp70- and Hsp90-associated ubiquitin ligase that labels chaperone-presented proteins with the degradation marker ubiquitin. Here we show that BAG-1 itself is a substrate of the CHIP ubiquitin ligase in vitro and in vivo. CHIP mediates attachment of ubiquitin moieties to BAG-1 in conjunction with ubiquitin-conjugating enzymes of the Ubc4/5 family. Ubiquitylation of BAG-1 is strongly stimulated when a ternary Hsp70.BAG-1.CHIP complex is formed. Complex formation results in the attachment of an atypical polyubiquitin chain to BAG-1, in which the individual ubiquitin moieties are linked through lysine 11. The noncanonical polyubiquitin chain does not induce the degradation of BAG-1, but it stimulates a degradation-independent association of the co-chaperone with the proteasome. Remarkably, this stimulating activity depends on the simultaneous presentation of the integrated ubiquitin-like domain of BAG-1. Our data thus reveal a cooperative recognition of sorting signals at the proteolytic complex. Attachment of polyubiquitin chains to delivery factors may represent a novel mechanism to regulate protein sorting to the proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号