首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Lu YM  Mansuy IM  Kandel ER  Roder J 《Neuron》2000,26(1):197-205
Coincident pre- and postsynaptic activity generates long-term potentiation (LTP), a possible cellular model of learning and memory. LTP has two components: (1) an increase in the excitatory postsynaptic potential (EPSP), and (2) an increase in the ability of the EPSP to generate a spike (E-S coupling of LTP). We have used pharmacological and genetic approaches to address the molecular nature of E-S coupling in CA1 pyramidal neurons. Blockade of the Ca2+-sensitive phosphatase, calcineurin, prevents induction of E-S coupling without interfering with LTP of the EPSP. Calcineurin produces its effect on E-S coupling by inducing a long-lasting depression (LTD) of the GABA(A)-mediated inhibitory postsynaptic potentials (IPSPs). This LTD of the IPSP was prevented by blockade of NMDA receptors. Thus, the tetanus that elicits NMDA-dependent LTP mediates a coordinately regulated double function. It produces LTP of the EPSP and, concomitantly, LTD of the IPSP that leads to enhancement of E-S coupling.  相似文献   

2.
The effects of adenosine A2 receptor antagonist (CP-66713) on long-term potentiation were studied using guinea pig hippocampal slices in a perfusion system. Tetanic stimulation of Schaffer collateral input which was applied during perfusion of CP-66713 (10 microM), did not induce long-term potentiation but rather long-term depression of evoked synaptic potentials (field EPSP), but induced long-term potentiation of the population spike in CA1 neurons. Thus, adenosine derivatives which accumulate in the synaptic cleft during the tetanic stimulation may be involved in induction of the long-term potentiation via A2 receptors at the synapse. The clear discrimination between long-term depression of the field EPSP and long-term potentiation of the population spike suggests EPSP-spike potentiation at the postsynaptic sites.  相似文献   

3.
Hemodynamic responses to adenosine, the A(1) receptor agonists N(6)-cyclopentyladenosine (CPA) and adenosine amine congener (ADAC), and the A(2) receptor agonist 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA) were investigated in the hindquarter vascular bed of the cat under constant-flow conditions. Injections of adenosine, CPA, ADAC, CPCA, ATP, and adenosine 5'-O-(3-thiotriphosphate) (ATPgamma S) into the perfusion circuit induced dose-related decreases in perfusion pressure. Vasodilator responses to the A(1) agonists were reduced by the A(1) receptor antagonists KW-3902 and CGS-15943, whereas responses to CPCA were reduced by the A(2) antagonist KF-17837. Vasodilator responses to adenosine were reduced by KW-3902, CGS-15943, and by KF-17837, suggesting a role for both A(1) and A(2) receptors. Vasodilator responses to ATP and the nonhydrolyzable ATP analog ATP gamma S were not attenuated by CGS-15943 or KF-17837. After treatment with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester, the cyclooxygenase inhibitor sodium meclofenamate, or the ATP-dependent K(+) (K) channel antagonists U-37883A or glibenclamide, responses to adenosine and ATP were not altered. Responses to adenosine, CPA, and CPCA were increased in duration by rolipram, a type 4 cAMP phosphodiesterase inhibitor, but were not altered by zaprinast, a type 5 cGMP phosphodiesterase inhibitor. When blood flow was interrupted for a 30-s period, the magnitude and duration of the reactive vasodilator response were reduced by A(1) and A(2) receptor antagonists. These data suggest that vasodilator responses to adenosine and the A(1) and A(2) agonists studied are not dependent on the release of cyclooxygenase products, nitric oxide, or the opening of K channels in the regional vascular bed of the cat. The present data suggest a role for cAMP in mediating responses to adenosine and suggest that vasodilator responses to adenosine and to reactive hyperemia are mediated in part by A(1) and A(2) receptors in the hindquarter vascular bed of the cat.  相似文献   

4.
腺苷及其衍生物的心血管效应和作用机制   总被引:1,自引:0,他引:1  
在实验中观察了腺苷及其衍生物的心血管效应和作用机制,结果表明:(1)腺苷和2-氯腺苷先引起由颈动脉体化学感受器内的A2受体所中介的血压短暂升高,随之为心血管系统A1和A2受体中介的持久而明显的血压降低;(2)腺苷受体激动剂环戊腺苷抑制窦房结起搏细胞的电生理活动;(3)环戊腺苷减弱异丙肾上腺素诱发的早发和迟发性后除极及触发电活动;(4)内源性腺苷参与无氧所致的心率减慢;(5)预缺血时腺苷受体的激活及  相似文献   

5.
6.
PD81,723 {(2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluromethyl)-phenyl]methanone} is a selective allosteric enhancer of the G(i)-coupled A1 AR (adenosine receptor) that is without effect on G(s)-coupled A2A ARs. PD81,723 elicits a decrease in the dissociation kinetics of A1 AR agonist radioligands and an increase in functional agonist potency. In the present study, we sought to determine whether enhancer sensitivity is dependent on coupling domains or G-protein specificity of the A1 AR. Using six chimaeric A1/A2A ARs, we show that the allosteric effect of PD81,723 is maintained in a chimaera in which the predominant G-protein-coupling domain of the A1 receptor, the 3ICL (third intracellular loop), is replaced with A2A sequence. These chimaeric receptors are dually coupled with G(s) and G(i), and PD81,723 increases the potency of N6-cyclopentyladenosine to augment cAMP accumulation with or without pretreatment of cells with pertussis toxin. Thus PD81,723 has similar functional effects on chimaeric receptors with A1 transmembrane sequences that couple with G(i) or G(s). This is the first demonstration that an allosteric regulator can function in the context of a switch in G-protein-coupling specificity. There is no enhancement by PD81,723 of G(i)-coupled A2A chimaeric receptors with A1 sequence replacing A2A sequence in the 3ICL. The results suggest that the recognition site for PD81,723 is on the A1 receptor and that the enhancer acts to directly stabilize the receptor to a conformational state capable of coupling with G(i) or G(s).  相似文献   

7.
The naturally occurring purine nucleoside adenosine has pronounced anticonvulsant and neuroprotective properties and plays a neuromodulatory role in the CNS. Kynurenic acid (KYNA) is an astrocyte-derived, endogenous neuroinhibitory compound, which shares several of adenosine's properties. In a first attempt to examine possible interactions between these two biologically active molecules, adenosine was focally applied into the striatum of freely moving rats by reverse microdialysis, and changes in extracellular KYNA were monitored over time. A 2-h infusion of adenosine increased KYNA levels in a dose-dependent manner, with 10 mm of adenosine causing a twofold elevation within 1 h. This effect was reversible and was effectively blocked by coinfusion of the specific A1 adenosine receptor antagonist 8-cyclopentyltheophylline (100 microm). In contrast, coinfusion of adenosine with MSX-3 (100 microm), an A2A receptor antagonist, did not affect the adenosine-induced increase in KYNA levels. Local striatal perfusion with the A1 receptor agonist N6-cyclopentyladenosine (100 microm) mimicked the effect of adenosine, whereas perfusion with the A2A receptor agonist CGS-21680 (100 microm) was ineffective. Finally, we tested the effect of adenosine (10 mm) on extracellular KYNA in striata that had been injected with quinolinate (60 nmol/1 microL) 7 days earlier. In this neuron-depleted tissue, perfusion with adenosine failed to affect extracellular KYNA levels. These data demonstrate that adenosine is capable of raising extracellular KYNA in the rat striatum by interacting with postsynaptic neuronal A1 receptors. This mechanism may result in a synergism between the neurobiological effects of adenosine and KYNA.  相似文献   

8.
The effects of a 10-day i.p. treatment of rats with diazepam on responses to subtype selective adenosine receptor agonists were studied 3 h, 2 and 8 days after termination of diazepam treatment in isolated cardiovascular tissues possessing distinct adenosine receptors. After long-lasting diazepam exposure, the relaxation elicited by the specific A2A receptor agonist CGS 21680 was enhanced in rat main pulmonary arteries (a tissue containing A2A adenosine receptors). The increased sensitivity of A2A receptors observed 3 h and 2 days after withdrawal of diazepam was completely restored by the 8th day of the wash-out period. N6-cyclopentyladenosine (CPA)-induced suppression in mechanical activity of electrically stimulated rat atrial myocardium (a tissue containing A1 adenosine receptors) was not altered following diazepam treatment. In order to reveal the possible role of inhibition of membrane adenosine transport in the effects of diazepam (a moderate inhibitor of membrane adenosine transport), the action of a 10-day treatment with dipyridamole or S-(p-nitrobenzyl)-6-thioinosine (NBTI; prototypic adenosine uptake inhibitors) was also studied. Dipyridamole or NBTI treatment, like diazepam, increased the responsiveness of rat pulmonary artery to CGS 21680, but did not influence the cardiodepressive effect of CPA in electrically driven left atrial myocardium. The CGS 21680-induced relaxations were significantly antagonized by 10 nM ZM 241385 (a selective A2A adenosine receptor antagonist) in vessels of diazepam-treated rats. The relaxation responses to verapamil were unaltered in pulmonary arteries obtained from animals chronically treated with diazepam, dipyridamole or NBTI. These results suggest that chronic diazepam treatment is able to enhance the A2A adenosine receptor-mediated vascular functions, but does not modify the responses mediated via A1 receptors of rat myocardium, where nucleoside transport inhibitory sites of membrane are of a very low density. It is possible that sensitization of A2A adenosine receptor-mediated vasorelaxation is due to a long-lasting inhibition of membrane adenosine transporter during diazepam treatment.  相似文献   

9.
The haemodynamic effects of adenosine are thought to result in part from a release of mast cell amines via A3 receptor stimulation. To investigate the nature of the receptors involved in adenosine-induced mast cell degranulation in the rat isolated omentum we have used adenosine analogues with varying specificities as activators of the A(1), A(2) and A(3) receptors, and antagonists with differing specificities for A(1) and A(2) receptors. Analogues which act predominantly as A(1) (e.g. N(6)-cyclopentyladenosine) or as mixed A(1)/A(2) receptor agonists (e.g. adenosine, inosine, 5'-(Nethylcarboxamido) adenosine) caused mast cell degranulation, whereas a predominantly A3 receptor agonist (IB-MECA) was inactive. Pre-treatment of the omentum with the A(1)/A(2) receptor antagonist 8-phenyltheophylline or with the more specific A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine significantly reduced agonist-induced degranulation. Pre-treatment with disodium cromoglycate or with BN52021 also reduced degranulation of mast cells in response to N(6)-cyclopentyladenosine. In the rat isolated omental mast cell we conclude that degranulation is an indirect result of A(1) receptor stimulation. Platelet-activating factor release appears to mediate at least part of the degranulation.  相似文献   

10.
The neuromodulator adenosine can be released as such, mainly activating inhibitory A1 receptors, or formed from released ATP, preferentially activating facilitatory A2A receptors. We tested if changes in extracellular adenosine metabolism paralleled changes in A1/A2A receptor neuromodulation in the aged rat hippocampus. The evoked release and extracellular catabolism of ATP were 49-55% lower in aged rats, but ecto-5'-nucleotidase activity, which forms adenosine, was 5-fold higher whereas adenosine uptake was decreased by 50% in aged rats. The evoked extracellular adenosine accumulation was 30% greater in aged rats and there was a greater contribution of the ecto-nucleotidase pathway and a lower contribution of adenosine transporters for extracellular adenosine formation in nerve terminals. Interestingly, a supramaximal concentration of an A1 receptor agonist, N6-cyclopentyladenosine (250 nM) was less efficient in inhibiting (17% in old versus 34% in young) and A2A receptor activation with 30 nM CGS21680 was more efficient in facilitating (63% in old versus no effect in young) acetylcholine release from hippocampal slices of aged compared with young rats. The parallel changes in the metabolic sources of extracellular adenosine and A1/A2A receptor neuromodulation in aged rats further strengthens the idea that different metabolic sources of extracellular adenosine are designed to preferentially activate different adenosine receptor subtypes.  相似文献   

11.
The contribution of adenosine receptors was evaluated in vascular relaxation in experimental hypothyroidism. Hypothyroid aortic rings contracted less than normal controls with noradrenaline, phenylephrine, and KCl; the difference was maintained after incubation with 1,3-dipropyl-8-p-sulfophenylxanthine (an A1 and A2 adenosine receptor blocker). The vascular relaxation induced by acetylcholine or carbachol was similar in normal and hypothyroid aortic rings. However, adenosine, N6-cyclopentyladenosine (an A1 adenosine receptor analogue), and 5'-N-ethylcarboxamidoadenosine (an A2 and A3 adenosine analogue) induced vasodilation that was larger in hypothyroid than in normal aortas. Nomega-nitro-L-arginine methyl ester shifted the dose-response curves of adenosine, N6-cyclopentyladenosine, or 5'-N-ethylcarboxamidoadenosine to the right in both normal and hypothyroid vessels. The blocker 1,3-dipropyl-8-p-sulfophenylxanthine significantly reduced adenosine-induced relaxation in the hypothyroid but not in the normal aortic vessels. These results suggest that in hypothyroid aortas, a larger adenosine-mediated vasodilation is observed probably due to an increase in receptor number or sensitivity.  相似文献   

12.
13.
1. These experiments investigated the action of histamine on local inhibition in the CA1 region of the in vitro hippocampal slice preparation using a paired-pulse paradigm. 2. We observed that histamine produced a concentration-dependent and reversible attenuation of paired-pulse inhibition. This effect was reduced by the H2 receptor antagonist, cimetidine, and mimicked by the H2 receptor agonist, impromidine. 3. We also observed that histamine produced concentration-dependent effects on the amplitude of the population spike that could be correlated with alterations in the field excitatory postsynaptic potential (EPSP) amplitude and input fiber volley. High concentrations of histamine produced a reduction in the amplitude of the population spike which was always accompanied by a reduction in the EPSP and fiber volley amplitude. 4. These results suggest that histamine, through the occupancy of H2 receptors, acts to modulate the efficacy of the local synaptic circuitry which is involved in producing paired-pulse inhibition in the hippocampus.  相似文献   

14.
J E Lee  G Bokoch  B T Liang 《FASEB journal》2001,15(11):1886-1894
Adenosine exerts a potent cardioprotective effect that is mediated by adenosine A1 and A3 receptors. The signaling pathways activated by the A1 and A3 receptors are distinct and involve selective coupling to phospholipases C and D, respectively. The objective of our study was to elucidate the signaling mechanism that mediates the coupling of each receptor to its respective phospholipase and to test the role of RhoA as a novel mediator leading from adenosine receptors to cardioprotection. C3 transferase and dominant negative RhoA (RhoAT19N) blocked the A3 receptor-mediated phospholipase D activation and cardioprotection but had no effect on A1 receptor-mediated phospholipase C activation or cardioprotection. In contrast, pertussis toxin treatment caused a greater inhibition of the diacylglycerol accumulation induced by the A1 agonist than by the A3 agonist, and it completely abrogated the A1 agonist-mediated cardioprotection. Thus, adenosine A1 and A3 receptors are linked to different G-proteins. The A3 receptor is coupled via RhoA to activate phospholipase D in exerting its cardioprotective effect, whereas the A1 receptor is linked via Gi to phospholipase C to produce cardioprotective responses. The present study identifies a novel role for RhoA and further suggests its importance in regulating cardiac cellular function.  相似文献   

15.
To ascertain the presence of adenosine receptors in the trout testis, cells isolated from testes at different spermatogenetic stages were cultured in the presence or absence of adenosine, adenosine receptor agonists, or antagonists and of cAMP analogs, for up to 20 min, or 20 hr, or 4.5 days. Cyclic AMP production was then assayed or 3H-thymidine incorporation was measured. Cellular content of cAMP was enhanced by adenosine, by the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), and by 2-p(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680), an adenosine A2A receptor-selective agonist. The increase in cAMP induced by the adenylate cyclase activator L-858051 was inhibited by the adenosine A1)receptor-selective agonists R-N6-(2-phenylisopropyl)adenosine (R-PIA) and N6-cyclopentyladenosine (CPA). These effects were antagonized by the two adenosine A2)receptor antagonists 3,7-dimethyl-1-propargylxanthine (DMPX) and 8-(3-chlorostyryl)caffeine (CSC), and by the adenosine A1)receptor-selective antagonist 8-cyclopentyl-1,3dipropylxanthine (CPX), respectively. Increase in the cAMP content induced by adenosine was inhibited by the cell permeable adenylate cyclase inhibitor 2',5'-dideoxyadenosine. These data suggest that A(1) and A(2) adenosine receptors which respectively inhibit and stimulate adenylate cyclase activity are present on trout testicular cells (unidentified), while the presence of A3 adenosine receptor subtype was not apparent. 3H-thymidine incorporation decreased in the presence of the adenylate cyclase activator L-858051 and of the cAMP analogs 8-CPT cAMP and Sp-5,6-DCI-cBiMPS, regardless of the presence or absence of the phosphodiesterase inhibitor RO 20-1724. This suggests that an increase in testicular cAMP may act as a negative growth regulator for the mitotic germ cells. In agreement with these data, the activation of A2 stimulatory receptors inhibited short-term (20 hr) DNA synthesis. However, the activation of A1 inhibitory receptors had the same effect. This suggests that events, cAMP-dependent or independent, induced by the activation of testicular adenosine receptors, may participate in the regulation of trout male germ cell proliferation.  相似文献   

16.
To test the hypothesis that adenosine improves skeletal muscle cell function, we exposed curarized mouse soleus and extensor digitorum longus (EDL) to a range of concentrations of adenosine (10(-9) M to 10(-5) M). Muscles contracted in Krebs-Henseleit bicarbonate buffer (27 degrees C, 95% O2 and 5% CO2) for 500 ms at 50 Hz once every 90 s. Soleus fatigued significantly less with adenosine present at concentrations of 10(-8) M and higher than with the Krebs-Henseleit vehicle control. Adenosine significantly improved force generation or delayed fatigue of EDL only with the initial adenosine challenge. To investigate the receptor population involved, we exposed soleus to agonists specific for A1 receptors (N6-cyclopentyladenosine, CPA), or A2 receptors (CGS 21680 hydrochloride, CGS), or A3 receptors (N6-benzyl-5'-N-ethylcarboxamidoadenosine, BNECA). CPA (A1) significantly decreased fatigue compared with the Krebs-Henseleit vehicle control at concentrations of 10(-9) M and higher. Muscles exposed to the A2 and A3 agonists did not differ from a Krebs-Henseleit plus methanol control. Phenylephrine (10(-6) M), an alpha-adrenergic agonist that increases the concentration of inositol triphosphate (IP3), significantly improved developed force in soleus. Neither a permeable cAMP analog, 8-bromo-cAMP (10(-5) M), nor a beta, agonist, isoproterenol (10(-6) M), had an effect on force generation in the soleus when compared with a saline control. Thus adenosine slowed fatigue in slow-twitch skeletal muscle through A1 receptors.  相似文献   

17.
Gao ZG  Gross AS  Jacobson KA 《Life sciences》2004,74(25):3173-3180
The G protein-coupled receptor allosteric modulator SCH-202676 (N-(2,3-diphenyl-1,2,4-thiadiazol-5-(2H)-ylidene)methanamine), which affects a wide range of structurally unrelated G protein-coupled receptors, has highly divergent effects on purine receptors. SCH-202676 inhibited radioligand binding to human adenosine A(1), A(2A), and A(3) receptors (IC(50) = 0.5-0.8 microM) and affected dissociation kinetics, but at the human P2Y(1) nucleotide receptor it had no effect. SCH-202676 (10 microM) selectively accelerated agonist dissociation at adenosine A(3) receptors and either slowed (adenosine A(1) receptors) or accelerated (adenosine A(2A) receptors) antagonist dissociation. Thus, SCH-202676 differentially modulated A(1), A(2A), and A(3) receptors as well as agonist- and antagonist-occupied receptors.  相似文献   

18.
Evidence for A1 and A2 adenosine receptors in guinea pig trachea   总被引:4,自引:0,他引:4  
The adenosine analogs [5'-N-ethylcarboxamideadenosine (NECA), 2-Chloro-adenosine (2-ClA), R-phenylisopropyladenosine (R-PIA), N6-cyclohexyl adenosine (CHA), and N6-cyclopentyladenosine (CPA)] produced both relaxation and contraction responses in isolated guinea-pig trachea. A concentration-related relaxation response was observed in trachea which were precontracted with either histamine or KC1. This response followed an order of analog potency that was indicative of the A2 receptor subtype (NECA greater than 2-ClA greater than R-PIA greater than CPA greater than CHA). Theophylline, an adenosine-receptor antagonist, blocked this relaxation response. In addition, a concentration-related contractile response was produced with adenosine analogs in those trachea that were not previously contracted. In contrast, the contractile response followed an analog potency indicative of the A1 receptor subtype (R-PIA greater than 2-ClA = CPA = CHA). This contractile response was not mediated by cholinergic, adrenergic or histaminergic receptors. 2-ClA induced a biphasic response, while NECA only relaxed these tissue under basal tone. Unlike the relaxation response, these contractile responses were not attenuated by theophylline, but were blocked by 1,3 dipropyl-8-(2 amino-4-chlorophenyl)xanthine (PACPX). These findings confirm the existence of two subpopulations of adenosine receptors in guinea pig trachealis muscle.  相似文献   

19.
The ability of adenosine A(1) receptors to activate type 2a protein phosphatase (PP2a) and account for antiadrenergic effects was investigated in rat myocardial preparations. We observed that the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) significantly reduces the isoproterenol-induced increase in left ventricular developed pressure of isolated heats, and this effect is blocked by pretreatment of hearts with the PP2a inhibitor cantharidin. CPA alone or given in conjunction with isoproterenol stimulation decreases phosphorylation of phospholamban and troponin I in ventricular myocytes. These dephosphorylations are blocked by an adenosine A(1) receptor antagonist and by PP2a inhibition with okadaic acid. Adenosine A(1) receptor activation was also shown to increase carboxymethylation of the PP2a catalytic subunit (PP2a-C) and cause translocation of PP2a-C to the particulate fraction in ventricular myocytes. These results support the hypothesis that adenosine A(1) receptor activation leads to methylation of PP2a-C and subsequent translocation of the PP2a holoenzyme. Increases in localized PP2a activity lead to dephosphorylation of key cardiac proteins responsible for the positive inotropic effects of beta-adrenergic stimulation.  相似文献   

20.
Abstract: Chronic treatment with the adenosine receptor antagonist caffeine evokes an up-regulation of A1 adenosine receptors and increased coupling of the receptor to G proteins in rat brain membranes. However, chronic agonist exposure has not been explored. Primary cultures of cerebellar granule cells were exposed chronically to A1 adenosine receptor agonists and antagonists. Exposure to the A1 adenosine receptor agonist N 6-cyclopentyladenosine resulted in (1) a time- and concentration-dependent reduction in the density of receptors labeled by 1,3-[3H]dipropyl-8-cyclopentylxanthine, (2) an enhanced ability of guanyl nucleotides to decrease the fraction of A1 adenosine receptor sites displaying high affinity for 2-chloroadenosine, and (3) a functional uncoupling of receptors from adenylyl cyclase (EC 4.6.1.1). The adenosine antagonists caffeine and 8- p -sulfophenyltheophylline produced alterations in A1 adenosine receptor homeostasis that were antipodal to those associated with agonist treatment. Antagonist exposure (1) increased the density of A1 adenosine receptors in cerebellar granule cell membranes, (2) blunted the effect of guanyl nucleotides on receptor coupling to G proteins, and (3) increased the functional coupling of receptors to adenylyl cyclase inhibition. Forskolin treatment of cerebellar granule cells did not affect receptor density, suggesting that cyclic AMP is not involved in the regulation of A1 adenosine receptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号