首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A close inspection of the crystal structure of the yeast 20 S proteasome revealed that a prominent connection between the two beta-rings is mediated by the subunit beta7/Pre4. Its C-terminal extension intercalates between the beta1/Pre3 and beta2/Pup1 subunits on the opposite ring. We show that the interactions promoted by the beta7/Pre4 tail are important to facilitate the formation of 20 S particles from two half-proteasome precursor complexes and/or to stabilize mature 20 S proteasomes. The deletion of 19 residues from the beta7/Pre4 C terminus leads to an accumulation of half-proteasome precursor complexes containing the maturation factor Ump1. The C-terminal extension of beta7/Pre4, which forms several hydrogen bonds with beta1/Pre3, is in addition required for the post-acidic activity mediated by the latter subunit. Deletion of the C-terminal tail of beta7/Pre4 results in an inhibition of beta1/Pre3 propeptide processing and abrogation of post-acidic activity. Our data obtained with yeast strains that expressed the mature form of Pre3 lacking its propeptide suggest that interactions between the Pre4 C terminus and Pre3 stabilize a conformation of its active site, which is essential for post-acidic activity. Deletion of the C-terminal extension of beta2/Pup1, which wraps around beta3/Pup3 within the same beta-ring, is lethal, indicating that this extension serves an essential function in proteasome assembly or stability.  相似文献   

2.
In this paper we demonstrate that the Candida albicans 20S proteasome is in vivo phosphorylated and is a good in vitro substrate (S(0.5) 14nM) of homologous protein kinase CK2 (CK2). We identify alpha6/C2, alpha3/C9, and alpha5/Pup2 proteasome subunits as the main in vivo phosphorylated and in vitro CK2-phosphorylatable proteasome components. In vitro phosphorylation by homologous CK2 holoenzyme occurs only in the presence of polylysine, a characteristic that distinguishes the yeast proteasomes from mammalian proteasomes which are phosphorylated by CK2 in the absence of polycations. The major in vivo phosphate acceptor is the alpha3/C9 subunit, being phosphorylated in serine, both in vivo and in vitro. The phosphopeptides generated by endoproteinase Glu-C digestion from in vivo labeled alpha3/C9 subunit, from in vitro phosphorylation by homologous CK2 holoenzyme, and from the recombinant alpha3/C9 subunit phosphorylated by recombinant human CK2-alpha subunit are identical, suggesting that CK2 is likely responsible for in vivo phosphorylation of this subunit. Direct mutational analysis shows that serine 248 is the residue of the alpha3/C9 subunit phosphorylated by CK2. The in vitro stoichiometry of phosphorylation of the alpha6/C2 and alpha3/C9 proteasome subunits by CK2 can be estimated as 0.7-0.8 and 0.4-0.5 mol of phosphate per mole of subunit, respectively. These results are consistent with the relative abundance of the unphosphorylated and phosphorylated isoforms of these subunits present in the purified 20S proteasome preparation. Our demonstration of phosphorylation of C. albicans proteasome suggests that phosphorylation might be a general mechanism of regulation of proteasome activity.  相似文献   

3.
The eukaryotic 20 S proteasome is formed by dimerization of two precursor complexes containing the maturation factor Ump1. Beta7/Pre4 is the only one of the 14 subunits forming the 20 S proteasome that is absent from these precursor complexes in Saccharomyces cerevisiae. Increased expression of Pre4 leads to a reduction in the level of precursor complex, indicating that Pre4 incorporation into these complexes is rate-limiting for their dimerization. When we purified these precursor complexes, we observed co-purification of Blm10, a large protein known to attach to the alpha ring surface of proteasomes. In contrast to single mutants lacking either Blm10 or the C-terminal extension of Pre4, a mutant lacking both grew extremely poorly, accumulated very high levels of precursor complexes, and was impaired in beta subunit maturation. The effect of blm10Delta on proteasome biogenesis is modest, apparently because the 19 S regulatory particle is capable of substituting for Blm10, as long as precursor complex dimers are stabilized by the Pre4 C terminus. We found that a mutation (sen3/rpn2) affecting the Rpn2 subunit inhibits attachment of the 19 S activator to the 20 S particle or its precursors. Although the sen3 mutation alone had no apparent effect on precursor complex dimerization and active site maturation, the sen3 blm10 double mutant was impaired in these processes. Together these data demonstrate that Blm10 and the 19 S activator have a partially redundant function in stabilizing nascent 20 S proteasomes and in promoting their activation.  相似文献   

4.
C Enenkel  A Lehmann    P M Kloetzel 《The EMBO journal》1998,17(21):6144-6154
26S proteasomes are the key enzyme complexes responsible for selective turnover of short-lived and misfolded proteins. Based on the assumption that they are dispersed over the nucleoplasm and cytoplasm in all eukaryotic cells, we wanted to determine the subcellular distribution of 26S proteasomes in living yeast cells. For this purpose, we generated yeast strains that express functional green fluorescent protein (GFP) fusions of proteasomal subunits. An alpha subunit of the proteolytically active 20S core complex of the 26S proteasome, Pre6/YOL038w, as well as an ATPase-type subunit of the regulatory 19S cap complex, Cim5/YOL145w, were tagged with GFP. Both chimeras were shown to be incorporated completely into active 26S proteasomes. Microscopic analysis revealed that GFP-labelled 20S as well as 19S subunits are accumulated mainly in the nuclear envelope (NE)-endoplasmic reticulum (ER) network in yeast. These findings were supported by the co-localization and co-enrichment of 26S proteasomes with NE-ER marker proteins. A major location of proteasomal peptide cleavage activity was visualized in the NE-ER network, indicating that proteasomal degradation takes place mainly in this subcellular compartment in yeast.  相似文献   

5.
20S proteasome biogenesis   总被引:2,自引:0,他引:2  
Krüger E  Kloetzel PM  Enenkel C 《Biochimie》2001,83(3-4):289-293
26S proteasomes are multi-subunit protease complexes responsible for the turnover of short-lived proteins. Proteasomal degradation starts with the autocatalytic maturation of the 20S core particle. Here, we summarize different models of proteasome assembly. 20S proteasomes are assembled as precursor complexes containing alpha and unprocessed beta subunits. The propeptides of the beta subunits are thought to prevent premature conversion of the precursor complexes into matured particles and are needed for efficient beta subunit incorporation. The complex biogenesis is tightly regulated which requires additional components such as the maturation factor Ump1/POMP, an ubiquitous protein in eukaryotic cells. Ump1/POMP is associated with precursor intermediates and degraded upon final maturation. Mammalian proteasomes are localized all over the cell, while yeast proteasomes mainly localize to the nuclear envelope/endoplasmic reticulum (ER) membrane network. The major localization of yeast proteasomes may point to the subcellular place of proteasome biogenesis.  相似文献   

6.
The 26 S proteasome of eukaryotes is responsible for the degradation of proteins targeted for proteolysis by the ubiquitin system. Yeast has been an important model organism for understanding eukaryotic proteasome structure and function. Toward a quantitative characterization of the proteasome, we have determined the localization, cellular levels, and stoichiometry of proteasome subunits. The subcellular localization of two ATPase components of the regulatory complex of the proteasome, Sug2/Rpt4 and Sug1/Rpt6, and a subunit of the 20 S proteasome, Pre1, were determined by immunofluorescence. In contrast to findings in multicellular organisms, these proteins are localized almost exclusively to the nucleus throughout the cell cycle. We have also determined the cellular abundance and stoichiometry of these proteasome subunits. Sug1/Rpt6, Sug2/Rpt4, and Pre1 are present in roughly equal stoichiometry with an abundance of 15,000-30,000 molecules/cell, corresponding to a concentration of 13-26 microM in the nucleus. Also, in contrast to mammalian cells, we find no evidence of a p27-containing "modulator" of the proteasome in yeast. This information will be useful in comparing and contrasting the yeast and mammalian proteasomes and should contribute to a mechanistic understanding of how this complex functions.  相似文献   

7.
The arrangement of subunits in human 20S proteasomes was recently determined by us by immunoelectron microscopy and chemical cross-linking. The positions of 4 of the 14 subunits differed from those found in the yeast proteasome by X-ray crystallography. Double labeling of human 20S proteasomes with antibodies to subunits C2 and C5 has now shown that these subunits are nearest neighbors. The result contradicts our published model for the human proteasome but is in accordance with the subunit arrangement in yeast proteasomes, suggesting that yeast and human proteasomes most probably have identical subunit arrangements. Immunoelectron microscopy also showed that the C-terminal extension at the human C2 subunit is flexible but takes up a well-defined position in the proteasome.  相似文献   

8.
Biogenesis, structure and function of the yeast 20S proteasome.   总被引:12,自引:3,他引:9       下载免费PDF全文
P Chen  M Hochstrasser 《The EMBO journal》1995,14(11):2620-2630
Intracellular degradation of many eukaryotic proteins requires their covalent ligation to ubiquitin. We previously identified a ubiquitin-dependent degradation pathway in the yeast Saccharomyces cerevisiae, the DOA pathway. Independent work has suggested that a major mechanism of cellular proteolysis involves a large multisubunit protease(s) called the 20S proteasome. We demonstrate here that Doa3 and Doa5, two essential components of the DOA pathway, are subunits of the proteasome. Biochemical analyses of purified mutant proteasomes suggest functions for several conserved proteasome subunit residues. All detectable proteasome particles purified from doa3 or doa5 cells have altered physical properties; however, the mutant particles contain the same 14 different subunits as the wild-type enzyme, indicating that most or all yeast 20S proteasomes comprise a uniform population of hetero-oligomeric complexes rather than a mixture of particles of variable subunit composition. Unexpectedly, we found that the yeast Doa3 and Pre3 subunits are synthesized as precursors which are processed in a manner apparently identical to that of related mammalian proteasome subunits implicated in antigen presentation, suggesting that biogenesis of the proteasome particle is highly conserved between yeast and mammals.  相似文献   

9.
PA28 is a modulator of the 20S proteasome. The PA28 binding sites on the 20S proteasome are still not well defined. Using yeast two-hybrid interaction assays and proteasome inactivation kinetics we provide evidence that the proteasome alpha4 subunit is one of the PA28 binding sites. This finding is supported by the observation that a hepatitis B virus X protein-derived polypeptide habouring the alpha4 proteasome subunit binding motif impairs the activation of 20S proteasomes by PA28.  相似文献   

10.
The 20S proteasome is the catalytic core of the 26S proteasome, a central enzyme in the ubiquitin-proteasome system. Its assembly proceeds in a multistep and orderly fashion. Ump1 is the only well-described chaperone dedicated to the assembly of the 20S proteasome in yeast. Here, we report a phenotype related to the DNA damage response that allowed us to isolate four other chaperones of yeast 20S proteasomes, which we named Poc1-Poc4. Poc1/2 and Poc3/4 form two pairs working at different stages in early 20S proteasome assembly. We identify PAC1, PAC2, the recently described PAC3, and an uncharacterized protein that we named PAC4 as functional mammalian homologs of yeast Poc factors. Hence, in yeast as in mammals, proteasome assembly is orchestrated by two pairs of chaperones acting upstream of the half-proteasome maturase Ump1. Our findings provide evidence for a remarkable conservation of a pairwise chaperone-assisted proteasome assembly throughout evolution.  相似文献   

11.
[URE3] is a prion of the nitrogen catabolism controller, Ure2p, and [PSI+] is a prion of the translation termination factor Sup35p in S. cerevisiae. Btn2p cures [URE3] by sequestration of Ure2p amyloid filaments. Cur1p, paralogous to Btn2p, also cures [URE3], but by a different (unknown) mechanism. We find that an array of mutations impairing proteasome assembly or MG132 inhibition of proteasome activity result in loss of [URE3]. In proportion to their prion—curing effects, each mutation affecting proteasomes elevates the cellular concentration of the anti-prion proteins Btn2 and Cur1. Of >4,600 proteins detected by SILAC, Btn2p was easily the most overexpressed in a pre9Δ (α3 core subunit) strain. Indeed, deletion of BTN2 and CUR1 prevents the prion—curing effects of proteasome impairment. Surprisingly, the 15 most unstable yeast proteins are not increased in pre9Δ cells suggesting altered proteasome specificity rather than simple inactivation. Hsp42, a chaperone that cooperates with Btn2 and Cur1 in curing [URE3], is also necessary for the curing produced by proteasome defects, although Hsp42p levels are not substantially altered by a proteasome defect. We find that pre9Δ and proteasome chaperone mutants that most efficiently lose [URE3], do not destabilize [PSI+] or alter cellular levels of Sup35p. A tof2 mutation or deletion likewise destabilizes [URE3], and elevates Btn2p, suggesting that Tof2p deficiency inactivates proteasomes. We suggest that when proteasomes are saturated with denatured/misfolded proteins, their reduced degradation of Btn2p and Cur1p automatically upregulates these aggregate-handling systems to assist in the clean-up.  相似文献   

12.
We have studied the consequences of heat shock on 20S/26S proteasome activity and activation, the proteasomal subunit composition, proteasome assembly, subunit mRNA stability as well as on the intracellular distribution of proteasomes. Our data show that heat shock locks 20S proteasomes in their latent inactive state and impairs further activation of the 26S proteasome by ATP. Proteasome mRNA levels are decreased after heat shock and the assembly of the proteasome complex is inhibited. Heat shock also induces a rapid reorganisation of the cellular distribution of the proteasome which appears to be connected with proteasome activity and the change of the cellular architecture after heat shock.  相似文献   

13.
We have identified a mammalian homologue of yeast Ump1p by searching for similar proteins in human and mouse expressed sequence tag (EST) databases. Ump1p is an accessory protein that is required for normal proteasome assembly in yeast (1). A mammalian homologue, which we refer to as “proteassemblin,” is a constituent of proteasome assembly intermediates (preproteasomes), but not fully assembled 20S proteasomes, as is Ump1p in yeast. We also provide evidence that proteassemblin is a constituent of pre-immunoproteasomes that contain the precursor of the interferon-γ-inducible subunit LMP2. By analogy with Ump1p, we hypothesize that proteassemblin is required for normal mammalian proteasome assembly.  相似文献   

14.
Assembly of mammalian 20 S proteasomes from individual subunits is beginning to be investigated. Proteasomes are made of four heptameric rings in the configuration alpha7beta7beta7alpha7. By using anti-proteasome and anti-subunit-specific antibodies, we characterized the processing and assembly of the beta subunit C5. The C5 precursor (25 kDa) remains as a free non-assembled polypeptide in the cell. The conversion of the C5 precursor to mature C5 (23 kDa) occurs concomitantly with its incorporation into 15 S proteasome intermediate and 20 S mature proteasome complexes. This processing is dependent on proteasome activity and takes place in the cytosol. These results are not fully compatible with the hypothesis that postulates that assembly of proteasomes takes place via a "half-proteasome" intermediate that contains one full alpha-ring and one full beta-ring of unprocessed beta subunit precursors.  相似文献   

15.
Lutz MS  Ellis SR  Martin NC 《Genetics》2000,154(3):1013-1023
The Saccharomyces cerevisiae nuclear gene RPM2 encodes a component of the mitochondrial tRNA-processing enzyme RNase P. Cells grown on fermentable carbon sources do not require mitochondrial tRNA processing activity, but still require RPM2, indicating an additional function for the Rpm2 protein. RPM2-null cells arrest after 25 generations on fermentable media. Spontaneous mutations that suppress arrest occur with a frequency of approximately 9 x 10(-6). The resultant mutants do not grow on nonfermentable carbon sources. We identified two loci responsible for this suppression, which encode proteins that influence proteasome function or assembly. PRE4 is an essential gene encoding the beta-7 subunit of the 20S proteasome core. A Val-to-Phe substitution within a highly conserved region of Pre4p that disrupts proteasome function suppresses the growth arrest of RPM2-null cells on fermentable media. The other locus, UMP1, encodes a chaperone involved in 20S proteasome assembly. A nonsense mutation in UMP1 also disrupts proteasome function and suppresses Deltarpm2 growth arrest. In an RPM2 wild-type background, pre4-2 and ump1-2 strains fail to grow at restrictive temperatures on nonfermentable carbon sources. These data link proteasome activity with Rpm2p and mitochondrial function.  相似文献   

16.
A number of important cellular events in animals and yeast are regulated by protein degradation, and it is becoming apparent that such regulated proteolysis is involved in many facets of plant physiology and development. We have investigated the role of protein degradation by proteasomes in plants using NtPSA1, a tobacco gene that is predominantly expressed in young developing tobacco tissues and has extensive homology to yeast and human alpha-type proteasome subunit genes. The NtPSA1 cDNA was used to complement a lethal mutation of the yeast PRC1 alpha subunit gene indicating that NtPSA1 encodes a functional proteasome subunit, and transient expression of an NtPSA1::GUS protein fusion in onion cells confirmed that the nuclear localisation signal that is present in the NtPSA1 peptide sequence is active in plant cells. Plants transformed with an antisense NtPSA1 gene had reduced levels of NtPSA1 mRNA and exhibited reduced apical dominance. In addition, these low NtPSA1 plants displayed several morphological defects associated with auxin resistance such as reduced stamen length, and showed increased tolerance to high concentrations of auxin. These results support a role for nuclear localised proteasomes in floral development and auxin responses.  相似文献   

17.
Immunoproteasomes and standard proteasomes assemble by alternative pathways that bias against the formation of certain "mixed" proteasomes. Differences between beta subunit propeptides contribute to assembly specificity and an assembly chaperone, proteassemblin, may be involved via differential propeptide interactions. We investigated possible mechanisms of biased proteasome assembly and the role of proteassemblin by identifying protein-protein interactions among human 20S proteasome subunits and proteassemblin using a yeast two-hybrid interaction assay. Forty-one interactions were detected, including five involving proteassemblin and contiguous beta subunits, which suggests that proteassemblin binds to preproteasomes via a beta subunit surface. Interaction between proteassemblin and beta5, but not beta5i, suggests that proteassemblin may be involved in the propeptide-dependent differential incorporation of these subunits. Interactions between proteassemblin and beta1, beta1i, and beta7 suggest that proteassemblin may regulate preproteasome dimerization via interactions with the C-termini of these subunits, which in the mature 20S structure extend to contact opposing beta subunit rings.  相似文献   

18.
Murata S 《IUBMB life》2006,58(5-6):344-348
Protein degradation is essential for maintenance of cellular homeostasis. The majority of proteins are selectively degraded in eukaryotic cells by the ubiquitin-proteasome system. The 26S proteasome selects target proteins that are covalently modified with polyubiquitin chains. The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. The catalytic activities are carried out by the core 20S proteasome. The eukaryotic 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7. Recent studies have revealed the mechanism responsible for the assembly of such a complex structure. This article recounts the observations that disclosed the biogenesis of 20S proteasomes and discusses the difference in the mechanism of assembly between archael, yeast, and mammalian 20S proteasomes.  相似文献   

19.
The assembly of individual proteasome subunits into catalytically active mammalian 20S proteasomes is not well understood. Using subunit-specific antibodies, we characterized both precursor and mature proteasome complexes. Antibodies to PSMA4 (C9) immunoprecipitated complexes composed of alpha, precursor beta and processed beta subunits. However, antibodies to PSMA3 (C8) and PSMB9 (LMP2) immunoprecipitated complexes made up of alpha and precursor beta but no processed beta subunits. These complexes possess short half-lives, are enzymatically inactive and their molecular weight is approximately 300 kDa. Radioactivity chases from these complexes into mature, long-lived approximately 700 kDa proteasomes. Therefore, these structures represent precursor proteasomes and are probably made up of two rings: one containing alpha subunits and the other, precursor beta subunits. The assembly of precursor proteasomes occurs in at least two stages, with precursor beta subunits PSMB2 (C7-I), PSMB3 (C10-II), PSMB7 (Z), PSMB9 (LMP2) and PSMB10 (LMP10) being incorporated before others [PSMB1 (C5), PSMB6 (delta), and PSMB8 (LMP7)]. Proteasome maturation (processing of the beta subunits and juxtaposition of the two beta rings) is accompanied by conformational changes in the (outer) alpha rings, and may be inefficient. Finally, interferon-gamma had no significant effect on the half-lives or total amounts of precursor or mature proteasomes.  相似文献   

20.
Proper function of the 26 S proteasome requires assembly of the regulatory complex, which is composed of the lid and base subcomplexes. We characterized Rpn5, a lid subunit, in fission yeast. We show that Rpn5 associates with the proteasome rpn5. Deletion (rpn5Delta) exacerbates the growth defects in proteasome mutants, leading to mitotic abnormalities, which correlate with accumulation of polyubiquitinated proteins, such as Cut2/securin. Rpn5 expression is tightly controlled; both overexpression and deletion of rpn5 impair proteasome functions. The proteasome is assembled around the inner nuclear membrane in wild-type cells; however, in rpn5Delta cells, proteasome subunits are improperly assembled and/or localized. In the lid mutants, Rpn5 is mislocalized in the cytosol, while in the base mutants, Rpn5 can enter the nucleus, but is left in the nucleoplasm, and not assembled into the nuclear membrane. These results suggest that Rpn5 is a dosage-dependent proteasome regulator and plays a role in mediating proper proteasome assembly. Moreover, the Rpn5 assembly may be a cooperative process that involves at least two steps: 1) nuclear import and 2) subsequent assembly into the nuclear membrane. The former step requires other components of the lid, while the latter requires the base. Human Rpn5 rescues the phenotypes associated with rpn5Delta and is incorporated into the yeast proteasome, suggesting that Rpn5 functions are highly conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号