首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of different gangliosides to rat T-helper lymphocytes was characterized under conditions that decrease CD4 expression on different mammalian T-helper lymphocytes. Saturation binding by monosialylated [3H]-GM1 to rat T-lymphocytes was time- and temperature-dependent, had a dissociation constant (KD) of 2.2 +/- 1.4 microM and a binding capacity near 2 fmoles/cell. Competitive inhibition of [3H]-GM1 binding demonstrated a structural-activity related to the number of unconstrained sialic acid moieties on GM1-congeneric gangliosides. A comparison between the results of these binding studies and ganglioside-induced decrease of CD4 expression demonstrated that every aspect of [3H]-GM1 binding concurs with ganglioside modulation of CD4 expression. It is concluded that the specific decrease of CD4 expression induced by pretreatment with gangliosides involves the initial process of ganglioside binding to specific sites on CD4+ T-helper lymphocytes.  相似文献   

2.
Serum kinetics and organ distribution of [14C]-sialic acid-GM3 and [3H]-sphingosine-GM1, administered as an intravenous bolus, were analysed in Wistar rats. [3H]-GM1 and [14C]-GM3 had serum half-lives of 1.4 hours and 1.8 hours, respectively. Three hours after injection 75% of the GM1- and 38% of the GM3-associated label were present in the liver. Smaller yet significant amounts of label were present in the central nervous system, kidneys and lung. In vitro studies showed that [14C]-GM3 and [3H]-GM1 incubated with serum were predominantly bound to the High Density Lipoprotein and the Low Density Lipoprotein fractions. These results suggest a rapid serum clearance of exogenous gangliosides by the liver in rats.  相似文献   

3.
GM1a [Gal beta1-3GalNAc beta1-4(NeuAc alpha2-3)Gal beta1-4Glc beta1-1Cer] is known to support and protect neuronal functions. However, we report that alpha-linolenic acid-containing GM1a (C18:3-GM1a), which was prepared using the reverse hydrolysis reaction of sphingolipid ceramide N-deacylase, induced apoptosis in neuronal cells. Intranucleosomal DNA fragmentation, chromatin condensation, and caspase activation, all typical features of apoptosis, were observed when mouse neuroblastoma Neuro2a cells were cultured with C18:3-GM1a but not GM1a containing stearic acid (C18:0) or oleic acid (C18:1). The phenotype of Neuro2a cells induced by C18:3-GM1a was similar to that evoked by lyso-GM1a. However, lyso-GM1a caused a complete disruption of lipid microdomains of Neuro2a cells and hemolysis of sheep erythrocytes, whereas C18:3-GM1a did neither. C18:3-GM1a, but not lyso-GM1a, was found to be abundant in lipid microdomains after the removal of loosely bound GM1a by BSA. The activation of stress-activated protein kinase/c-Jun N-terminal kinase in Neuro2a cells was observed with lyso-GM1a but not C18:3-GM1a. These results indicate that the mechanism of apoptosis induced by C18:3-GM1a is distinct from that caused by lyso-GM1a. This study also clearly shows that fatty acid composition of gangliosides significantly affected their pharmacological activities when added to the cell cultures and suggests why naturally occurring gangliosides do not possess polyunsaturated fatty acids as a major constituent.  相似文献   

4.
In order to search for novel components of lipid membrane microdomains involved in neural signalling pathways, mAbs (monoclonal antibodies) were raised against the detergent-insoluble membrane fraction of PC12 (pheochromocytoma) cells. Among the 22 hybrid clones, mAb PR#1 specifically detected a fucoganglioside Fuc(Gal)-GM1 [a-fucosyl(a-galactosyl)-GM1], a ganglioside homologous with GM1a (II3NeuAc,GgOse4Cer), as a novel member of microdomain components with biological functions. In the presence of mAb PR#1 in the culture medium, the outgrowth of neurites was induced in PC12 cells in a dose-dependent manner, with no effects on cell proliferation, suggesting that Fuc(Gal)-GM1 is preferentially involved in PC12 cell neuritogenesis. Effects through Fuc(Gal)-GM1 were different from those through GM1a during differentiation, e.g. under PR#1 treatment on Fuc(Gal)-GM1, round cell bodies with thinner cell processes were induced, whereas treatment with CTB (cholera toxin B subunit), a specific probe for GM1a, produced flattened cell bodies with thicker pro-cesses. Molecular analysis demonstrated that the PR#1-Fuc(Gal)-GM1 pathway was associated with Fyn and Yes of the Src family of kinases, although Src itself was not involved. No association was found with TrkA (tropomyosin receptor kinase A) and ERKs (extracellular-signal-regulated kinases), which are responsible for GM1a-induced differentiation. From these findings, it is suggested that a fucoganglioside Fuc(Gal)-GM1 provides a functional platform distinct from that of GM1a for signal transduction in PC12 cell differentiation.  相似文献   

5.
Platelet activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acetyl-GPC) has been known to have biological effect on cells. The mechanisms of the effect of the potent phospholipid on cells has not been established. We have used 1-O-[3H]alkyl-2-acetyl-GPC [( 3H]PAF) to study the interaction on the isolated membranes of U937 cells. The binding process was time, protein concentration, temperature dependent and reversible. The binding of [3H]PAF to the U937 cell membranes was slightly inhibited by the addition of PAF analogue, 3-O-Hexadecyl-2-acetyl-sn-glycerol-1-phosphorylcholine. U937 cell membranes showed high affinity binding sites for PAF with equilibrium dissociation constant (Kd) of 5 x 10(-9) M. The displacement of bound [3H]PAF with 500-fold excess of nonlabeled PAF was not altered suggesting that the bound [3H]PAF was not degraded during the binding. Binding of [3H]PAF on U937 cell membranes was inhibited by PAF antagonist, 59227RP. The kinetic of the inhibition by PAF antagonist is competitive suggesting that PAF and PAF antagonist bind at the same site.  相似文献   

6.
Rat hypothalamic blocks incubated in vitro were used to study the characteristics of binding of [3H]dexamethasone and other steroids to cytosolic binding sites. Cytosols prepared following incubation of the tissue with [3H]dexamethasone for 2 h contained specifically bound steroid in amounts that depended upon the concentration of potassium (but not sodium) ions in the extracting buffer. There was an increase in bound [3H]dexamethasone extracted as the potassium ion concentration increased up to 0.1 M, but not beyond. Dexamethasone, when added to hypothalami in vitro caused a biphasic inhibition of bioactive corticotrophin-releasing factor (CRF) release, and the extent of the second phase of inhibition was dose-related. 11-Epicortisol, when added in a 100-fold molar excess over dexamethasone was able to prevent the second phase of inhibition caused by the latter steroid, as in the binding studies it was able to cause a 50% reduction in the binding of [3H]dexamethasone. In the functional studies it was shown that 11-epicortisol was able to "rescue" the tissue from dexamethasone-mediated delayed inhibition of CRF secretion if added to the blocks 30 min (but not later) after the agonistic steroid.  相似文献   

7.
8.
The effects of epidermal growth factor transforming growth factor beta (TGF beta) and other growth factors on the proliferation and differentiation of a cell line derived from rat intestinal crypt epithelium (IEC-6) were defined. Incorporation of [3H]-thymidine was stimulated 1.4-2.4 fold by insulin, insulin like growth factor (IGF), platelet derived growth factor (PDGF), epidermal growth factor (EGF) and 2% fetal calf serum (FCS) respectively. Additive stimulation was observed when FCS was supplemented by insulin,IGF-I or PDGF but not EGF. Incorporation of [3H]-thymidine by IEC-6 was strongly inhibited by TGF beta with greater than 80% inhibition of incorporation at concentration approximately equal to 2.0 pM. IEC-6 cells bound 4.1 +/- 0.15 X 10(4) molecules TGF beta/cell and appeared to have only a single class of high affinity receptors (Kd approximately equal to 0.5 pM). TGF beta inhibition was unaffected by the presence of insulin or IGF-I suggesting it inhibits proliferation at a step subsequent to that at which these growth factors stimulate [3H]-thymidine incorporation. TGF beta also reduced the stimulation induced by FCS by 65%. In contrast EGF reduced TGF beta inhibition by 60%. IEC-6 cells demonstrated the appearance of sucrase activity after greater than 18 hours treatment with TGF beta. These findings suggest that TGF beta may inhibit proliferative activity and promote the development of differentiated function in intestinal epithelial cells.  相似文献   

9.
Cholera toxin (CT) covalently linked to horseradish peroxidase (HRP) is a specific cytochemical marker for its receptor, the monosialoganglioside GM1. The binding and endocytosis of exogenous [3H]GM1 by cultured murine neuroblastoma cells (line 2A [CCl-131] ), which contain predominantly GM3, was examined by quantitative electron microscope autoradiography. The relationship between exogenous receptor, [3H]GM1, and CT HRP was studied in double labeling experiments consisting of autoradiographic demonstration of [3H]GM1 and cytochemical visualization of HRP. Exogenous [3H]GM1 was not degraded after its endocytosis by cells for 2 h at 37 degrees C. Quantitative studies showed similar grain density distributions in cells treated with [3H]GM1 alone and in cells treated with [3H]GM1 followed by CT-HRP. Qualitative studies conducted in double labeling experiments showed autoradiographic grains over the peroxidase-stained plasma membrane, lysosomes, and vesicles at the trans aspect of the Golgi apparatus. The findings indicate that exogenous glycolipid is associated with the plasmid membrane of deficient cells and undergoes endocytosis. The quantitative ultra-structural autoradiographic studies are consistent with the hypothesis that the spontaneous endocytosis of exogenous [3H]GM1 controls the subsequent uptake of CT-HRP.  相似文献   

10.
Glucocorticosteroids stimulate growth hormone (GH) synthesis and inhibit prolactin (PRL) synthesis and cell growth in cultured GH3 cells, a clonal cell strain derived from a rat pituitary tumour. This model system was used to study the mechanism by which glucocorticosteroids enter target cells. The cellular uptake of [3H]dexamethasone was temperature dependent and was further inhibited by addition of an excess amount of cold dexamethasone. Half maximal uptake was obtained after about 5 min at 37 degrees C. The initial rates of [3H]dexamethasone uptake were a linear function of the extracellular hormone concentration. The uptake of [3H]dexamethasone in intact cells studied at different temperatures resulted in linear Arrhenius plots, with a calculated energy of activation of 91.0 kJ x mole-1 x degree-1. Scatchard analysis of specifically cell bound [3H]dexamethasone at equilibrium (0 degrees C) showed a straight line with a calculated dissociation constant (Kd) of 1.6 x 10(-9) M and a maximal uptake of 180 x 10(-15) mole/mg cell protein. Specific binding of [3H]dexamethasone to cytosol proteins could only be demonstrated at 0 degrees C. These results indicate that [3H]dexamethasone diffuses passively into the cell, and binds to specific receptors in an energy dependent way.  相似文献   

11.
The binding to isolated hepatocyte plasma membranes of radioactively labelled inhibitors of microfilamentous and microtubular protein function ([3H]cytochalasin B and [3H]colchicine, respectively) was studied as one means of assessing the degree of association of these proteins with cell surface membranes. [3H]Cytochalasin B which behaved identically to the unlabelled compound with respect to binding to these membranes was prepared by reduction of cytochalasin A with NaB3H4. The binding was rapid, readily reversible, proportional to the amount of membrane and relatively insensitive to changes of pH or ionic strength. At 10(-6) M [3H]cytochalasin B, glucose of p-chloromercuribenzoate, an inhibitor of glucose transport inhibited binding by about 20%; treatment of membranes with 0.6 M KI which depolymerizes F actin to G actin caused about 60% inhibition of binding. These two types of inhibition were additive indicating two separate classes of binding sites, one associated with sugar transport and one with microfilaments. Filamentous structures with the diameter of microfilaments (50 A) were seen in electron micrographs of thin sections of the membranes. At concentrations greater than 10(-5) M [3H]cytochalasin B, binding was proportional to drug concentration, characteristic of non-specific adsorption or partitioning. Intracellular membranes of the hepatocyte also bound [3H]cytochalasin B, those of the smooth endoplasmic reticulum to a greater extent than plasma membranes. [3H]Colchicine bound to plasma membranes in proportion to the amount of membrane and at a rate compatible with binding to tubulin. However, other properties of the binding including effects of temperature, drug concentration and antisera against tubulin were different from those of binding to tubulin. Hence, no evidence was obtained for association of microtubular elements with these membranes. Despite this there appeared to be an interdependence between microtubule and microfilament inhibitors: vinblastine sulfate stimulated [3H]cytochalasin B binding and cytochalasin B stimulated 3H colchicine binding. [3H]Colchicine also bound to intracellular membranes, especially smooth microsomes.  相似文献   

12.
Two phenylalkylamine Ca2+ channel ligands, (+/-)-[3H]verapamil ((+/-)-[3H]V) (-)-[3H]desmethoxyverapamil ((-)-[3H]DV), were employed in whole cell binding assays to characterize the specific high affinity binding sites on Ca2+ channels, their cooperativity and modulations induced on cultured human embryonal vascular smooth muscle preparation (VSM) by: 1) Beta-adrenergic stimulation of the cell, 2) exposure to high K+ concentration, 3) exposure to high concentration of Mg2+ ions, 4) the presence of a benzothiazepine Ca2+ channel antagonist and modulator d-cis-diltiazem, and 5) guanylylimidodiphosphate. The total amounts of specific (+/-)-[3H]V and (-)-[3H]DV binding sites present on VSM cells increased significantly after beta-adrenergic receptor activation, following cell membrane depolarization induced by high concentrations of K+, in the presence of Ca2+ chelator Na3EDTA, and after incubation of VSM cells with a benzothiazine-type Ca2+ channel blocker d-cis-diltiazem. A marked reduction of (-)-[3H]DV binding was observed after permanent G-protein activation by a nonhydrolyzable analog of guanylylimidodiphosphate, after incubation of the cells with norepinephrine, and after incubation of VSM cells with millimolar concentration of Mg2+. The results suggest the existence of multiple modulations of specific (-)-[3H]DV binding sites on Ca2+ channel corresponding to the way of activation of the cell and also to the immediate "state" of the membrane bound Ca2+ channels present on VSM cells, the positive heterotropic interaction after beta-adrenergic stimulation, the homotropic positive allosteric interaction induced by d-cis-diltiazem and pure noncompetitive inhibition induced by guanylylimidodiphosphate. The presence of high concentrations of Mg2+ inhibited whereas the presence of Ca2+ chelator, of ethylenediamine-tetraacetic acid sodium salt, significantly increased the total number of specific high affinity (-)-[3H]DV binding sites on VSM cells.  相似文献   

13.
Radiolabeled fluoromisonidazole (FMISO) is being investigated as an imaging agent for hypoxia in tumors and nonmalignant tissues in myocardial infarct or stroke. In this study in vitro cell cultures were used to characterize the oxygen dependency of FMISO uptake and to examine other modifying factors. The uptake of [3H]FMISO was measured in four cell lines in vitro: V-79, EMT-6(UW), RIF-1, and CaOs-1. The modifying effects of different O2 levels as well as cell growth state and concentration of glucose and nonprotein sulfhydryls were examined. In these cell types an O2 level between 720 and 2300 ppm inhibited FMISO binding by 50%, relative to binding under anoxic conditions. These values bracket the O2 level which confers full radiobiologic hypoxia, about 1000 ppm. Some bound label was released from cells in the first 1 to 3 h after a 3-h anoxic labeling with [3H]FMISO, but this does not represent tritium loss from the parent molecule. Cells from unfed plateau-phase cultures took up less [3H]FMISO than did exponentially growing cells incubated at comparable O2 levels. Reducing glucose to 1/10 or 1/100 of the usual concentration in medium had little effect on binding of micromolar levels of FMISO, except in V-79 cells, where reduced glucose levels were associated with increased FMISO accumulation. Adding cysteamine to the culture medium moderately increased FMISO uptake. We conclude that cell growth state, glucose, and nonprotein sulfhydryl concentrations affect FMISO binding, albeit less than varying O2 levels: anoxic/oxic binding ratios vary from 12.6 to 28 for the four cell types examined. Nonetheless these factors must be considered in evaluating the oxygen-dependent binding of this nitroimidazole in tumors or tissues.  相似文献   

14.
Specific insulin-like growth factor I (IGF-I) receptors on a human erythroleukemia cell line (K-562 cells) were identified and characterized. [125I]-IGF-I specifically bound to K-562 cells and the binding was displaced by unlabeled IGF-I in a dose dependent manner, and half maximal inhibition of the binding was observed at 7 ng/ml IGF-I. [125I]IGF-I binding to the cells was displaced by multiplication stimulating activity (MSA) and by porcine insulin, with potencies that were 10, and 100 times less than that of IGF-I, respectively. By an affinity labeling technique, IGF type I receptors were found to be present in the K-562 cells. When the cells were differentiated by hemin (40 microM), specific binding of [125I]IGF-I to the cells was decreased to 56.8 +/- 5.0% of that for undifferentiated cells. Furthermore, at physiological concentration of IGF-I stimulated thymidine incorporation into DNA and increased the number of cells. These data demonstrate that K-562 cells have specific receptors for IGF-I which may be functionally important for these cells, and that the IGF-I binding sites decrease with cell differentiation. This system might be useful in studying the interaction of IGF-I receptors.  相似文献   

15.
Mutants of Escherichia coli containing a defective sn-glycerol 3-phosphate acyltransferase are conditionally defective in the synthesis of acylglycerol phosphate (acylglycerol-P). Incubation of a deep rough derivative of one of these plsB strains with 1-[3H]oleoylglycerol-32P resulted in the binding of up to 70 nmol of oleoylglycerol-P per 100 nmol of cellular phospholipid. The binding was dependent on time, oleoylglycerol-P concentration, and the quantity of cells employed. The rate and extent of oleoylglycerol-P binding was affected by the deep rough mutation. The altered phospholipid composition due to oleoylglycerol-P binding was without consequence on cell growth and viability, but caused the appearance of intracellular multilamellar structures. Use of the double-labeled oleoylglycerol P demonstrated that the entire molecule was bound to the cell. Intact [3H]-oleoylglycerol-32P was converted to phosphatidylethanolamine and phosphotidyl-glycerol at a rate about 40% of that of de novo phospholipid synthesis. These data demonstrate the transmembrane movement of oleoylglycerol-P to the inner surface of the cytoplasmic membrane and suggest that it may become possible to supplement plsB strains of E. coli with acylglycerol-P's.  相似文献   

16.
1-Phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), an effective inhibitor of UDP-glucose:ceramide glucosyltransferase, caused growth inhibition of cultured rabbit skin fibroblasts in a dose-dependent manner. At 50 microM both threo and erythro isomers of PDMP completely suppressed the cell growth. Major gangliosides of the fibroblasts, GM3 and GD3, were greatly reduced in amounts in the presence of threo-PDMP and accumulation of ceramides was observed. Surface labeling with galactose oxidase and [3H]NaBH4 demonstrated that neural glycosphingolipids with four or more sugars present on the surface of control cells were not detectable when the fibroblasts were grown in medium containing threo-PDMP. Metabolic labeling of cellular glycosphingolipids with [14C]-galactose showed reduced incorporation of radioactivity into gangliosides and neutral glycosphingolipids when threo-PDMP was present in the medium. In contrast, the erythro isomer of PDMP did not affect the biosynthesis of glycosphingolipids, a result suggesting that the inhibitory effect of erythro-PDMP on cell growth was due to a mechanism other than the inhibition of glucosyltransferase.  相似文献   

17.
Bumetanide is a potent inhibitor of cation-chloride co-transport systems in many cell types, including duck red cells. We studied equilibrium binding of [3H]bumetanide to intact duck red cells under a number of conditions known to affect (Na + K + 2Cl) co-transport in these cells. Saturable [3H]bumetanide binding to duck red cells is markedly stimulated by addition of norepinephrine or cell shrinkage, conditions which similarly stimulate co-transport. In the presence of norepinephrine and saturating concentrations of extracellular sodium, potassium, and chloride for the co-transporter, we found approximately 1000 [3H]bumetanide-binding sites/red cell, and measurement of 24Na+ influx on the same cells yielded a turnover number of approximately 4000/s for the co-transporter. 24Na+ influx was negatively correlated with the amount of bound [3H]bumetanide, and both saturable binding and inhibition of influx were half-maximal at approximately 10(-7) M [3H]bumetanide. Binding of [3H]bumetanide to duck red cells is stimulated in a saturable manner by increasing extracellular sodium and potassium. Chloride has a biphasic effect on [3H]bumetanide binding; increasing [Cl-]o (by replacement of methylsulfate) from 0 to 32 mM markedly enhances binding, whereas further increasing [Cl-]o to 160 mM inhibits binding. This behavior is similar to that reported for bumetanide inhibition of duck red cell (Na + K + 2Cl) co-transport (Haas, M., and McManus, T. J. (1983) Am. J. Physiol. 245, C235-C240; Haas, M., and McManus, T. J. (1982) Biophys. J. 37, 214a) and [3H]bumetanide binding to membranes from dog kidney outer medulla (Forbush, B. III, and Palfrey, H. C. (1983) J. Biol. Chem. 258, 11787-11792).  相似文献   

18.
Human fibroblasts, cultured in medium containing 10% fetal calf serum, responded dramatically to choleragen with an increase in cyclic adenosine monophosphate content to greater than 48 times basal levels. Analysis of these cells for gangliosides indicated that the major ganglioside was N-acetylneuraminylgalactosylglucosylceramide (GM3) with trace amounts (less than or equal to 100 pmol/mg of protein) of other gangliosides including GM1, the putative choleragen receptor. Although the cells contained three glycosyltransferases required for ganglioside synthesis, the N-acetylgalactosaminyltransferase activity necessary for the conversion of GM3 to more complex gangliosides was not detected. When the cells were grown in medium containing [14C]galactose or N-acety[3H]mannosamine, however, all of the gangliosides became labeled, indicating that the cells can synthesize complex gangliosides. Although fetal calf serum contains gangliosides including GM1, [3H]GM1 was taken up poorly from the growth medium and uptake at the rate observed could have accounted for less than 2% of the GM1 content of the cells. When the cells were incubated in chemically defined medium containing [3H]GM1 at the concentrations present in fetal calf serum, rapid uptake of the ganglioside occurred and the total GM1 content of the cells increased threefold in less than 3 h. Thus, although the cells are capable of binding exogenous gangliosides, the gangliosides in fetal calf serum are in a form not readily available to the cells.  相似文献   

19.
Bone cells in vivo exist in direct contact with extracellular matrix, which regulates their basic biological processes including metabolism, development, growth and differentiation. Thus, the in vitro activity of cells cultured on tissue culture treated plastic could be different from the activity of cells cultured on their natural substrate. We selected MC3T3-E1 pre-osteoblastic cells to study the effect of extracellular matrix on cell proliferation because these cells undergo a progressive developmental sequence of proliferation and differentiation. MC3T3-E1 cells were cultured on plastic or plastic coated with ECM, fibronectin, collagen type I, BSA or poly l-lysine and their ability to proliferate was assessed by incorporation of [3H]dT or by enumeration of cells. Our results show that (1) ECM inhibits incorporation of [3H]dT by MC3T3-E1 cells; (2) collagen type I, but not BSA, poly l-lysine or fibronectin also inhibits incorporation of [3H]dT; (3) the level of ECM inhibition of [3H]dT incorporation is directly related to the number of cells cultured, but unrelated to the cell cycle distribution or endogenous thymidine content; (4) the kinetic profile of [3H]dT uptake suggest that ECM inhibits transport of [3H]dT from the extracellular medium, and (5) cell counts are similar in cultures whether cells are grown on plastic or ECM. These results suggest that decreased incorporation of [3H]dT by cells cultured on ECM is not reflective of bone cell proliferation.  相似文献   

20.
A protein complex (PC) composed of the MRP8 and MRP14 proteins has previously been shown to be a specific inhibitor of casein kinase I and II. This PC is expressed during the late stages of terminal differentiation induced in human promyelocytic HL-60 leukemia cells by 1 alpha,25-dihydroxyvitamin D3 and in human monocytic THP-1 leukemia cells by phorbol 12-myristate 13-acetate. This expression is associated with terminal cell differentiation because incubation of HL-60 cells with an agent or condition that causes suppression of growth but not induction of differentiation does not result in expression of the PC. At concentrations of 5-15 nM, the purified PC inhibited the growth of HL-60 cells and THP-1 cells, as well as other cell types belonging to different cell lineages. This growth inhibition was preceded by a reduction in [32P]phosphate incorporation and, at the higher PC concentrations, was associated with a reduction in [3H]thymidine, [3H]uridine, and [32S]methionine incorporation. The specific expression pattern and growth-inhibitory character of the PC suggests that the complex may have a role in suppressing cell growth during monomyelocytic terminal differentiation induced by specific chemical stimuli and during physiological and pathological events associated with monomyelocytic cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号