首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fresh produce is often a high-risk food for norovirus contamination because it can become contaminated at both preharvest and postharvest stages and it undergoes minimal or no processing. Currently, there is no effective method to eliminate the viruses from fresh produce. This study systematically investigated the effectiveness of high-pressure processing (HPP) on inactivating murine norovirus (MNV-1), a surrogate for human norovirus, in aqueous medium and fresh produce. We demonstrated that MNV-1 was effectively inactivated by HPP. More than a 5-log-PFU/g reduction was achieved in all tested fresh produce when it was pressurized at 400 MPa for 2 min at 4°C. We found that pressure, pH, temperature, and food matrix affected the virus survival in foods. MNV-1 was more effectively inactivated at 4°C than at 20°C in both medium and fresh produce. MNV-1 was also more sensitive to HPP at neutral pH than at acidic pH. We further demonstrated that disruption of viral capsid structure, but not degradation of viral genomic RNA, is the primary mechanism of virus inactivation by HPP. However, HPP does not degrade viral capsid protein, and the pressurized capsid protein was still antigenic. Overall, HPP had a variable effect on the sensorial quality of fresh produce, depending on the pressure level and type of product. Taken together, HPP effectively inactivated a human norovirus surrogate in fresh produce with a minimal impact on food quality and thus can provide a novel intervention for processing fruits intended for frozen storage and related products such as purees, sauces, and juices.  相似文献   

2.
Gamma irradiation is a nonthermal processing technology that has been used for the preservation of a variety of food products. This technology has been shown to effectively inactivate bacterial pathogens. Currently, the FDA has approved doses of up to 4.0 kGy to control food-borne pathogens in fresh iceberg lettuce and spinach. However, whether this dose range effectively inactivates food-borne viruses is less understood. We have performed a systematic study on the inactivation of a human norovirus surrogate (murine norovirus 1 [MNV-1]), human norovirus virus-like particles (VLPs), and vesicular stomatitis virus (VSV) by gamma irradiation. We demonstrated that MNV-1 and human norovirus VLPs were resistant to gamma irradiation. For MNV-1, only a 1.7- to 2.4-log virus reduction in fresh produce at the dose of 5.6 kGy was observed. However, VSV was more susceptible to gamma irradiation, and a 3.3-log virus reduction at a dose of 5.6 kGy in Dulbecco's modified Eagle medium (DMEM) was achieved. We further demonstrated that gamma irradiation disrupted virion structure and degraded viral proteins and genomic RNA, which resulted in virus inactivation. Using human norovirus VLPs as a model, we provide the first evidence that the capsid of human norovirus has stability similar to that of MNV-1 after exposure to gamma irradiation. Overall, our results suggest that viruses are much more resistant to irradiation than bacterial pathogens. Although gamma irradiation used to eliminate the virus contaminants in fresh produce by the FDA-approved irradiation dose limits seems impractical, this technology may be practical to inactivate viruses for other purposes, such as sterilization of medical equipment.  相似文献   

3.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.  相似文献   

4.
The Inactivation kinetics of alpha-glucosidase, glucoamylase, alpha-amylase, and acid carboxypeptidase in fresh sake using a continuous flow system for high-pressure carbonation were investigated. In addition, the effects of ethanol and sugar concentrations on inactivation of the enzymes in high-pressure carbonated sake were investigated. Among the enzymes investigated, alpha-glucosidase was the most stable and alpha-amylase was the most labile on inactivation under carbonation. The decimal reduction times (D values) of alpha-glucosidase, glucoamylase, alpha-amylase (extrapolated from the Z value), and acid carboxypeptidase were 29, 6, 2, and 5 min respectively at 45 degrees C. These values are lower than those subjected to heat treatment. On the carbonation treatment as well as the heat treatment, ethanol accelerated the inactivation of all four enzymes, but glucose depressed the inactivation of these enzymes, except for acid carboxypeptidase. These results suggest that this continuous flow system enabled effective inactivation of enzymes in fresh sake.  相似文献   

5.
6.
AIMS: To investigate the combined effect of high-pressure treatments (HPT) and milk inoculation with bacteriocin-producing lactic acid bacteria (BP-LAB) on the survival of Staphylococcus aureus during ripening of raw milk cheese. METHODS AND RESULTS: Cheeses were manufactured from raw milk artificially contaminated with S. aureus at ca 5 log CFU ml(-1), a commercial starter culture and one of seven strains of BP-LAB, added as adjuncts at 0.1%. HPT of cheeses were performed on days 2 or 50 at 300 MPa (10 degrees C, 10 min) or 500 MPa (10 degrees C, 5 min). On day 3, S. aureus counts were 6.46 log CFU g(-1) in control cheese. Milk inoculation with different BP-LAB lowered S. aureus counts on day 3 when compared with control cheese by up to 0.46 log CFU g(-1), HPT at 300 MPa on day 2 by 0.45 log CFU g(-1) and HPT at 500 MPa on day 2 by 2.43 log CFU g(-1). Combinations of BP-LAB with HPT at 300 and 500 MPa on day 2 lowered S. aureus counts on day 3 by up to 1.02 and 4.00 log CFU g(-1) respectively. CONCLUSIONS: The combined effect of milk inoculation with some of the BP-LAB tested and HPT of cheese on S. aureus inactivation was synergistic. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of HPT at lower pressures with BP-LAB inoculation is a feasible system to improve cheese safety in case of deleterious effects on cheese quality caused by HPT at higher pressures.  相似文献   

7.
8.
Inactivation of a Norovirus by High-Pressure Processing   总被引:2,自引:1,他引:1       下载免费PDF全文
Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20°C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log10 PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5°C; a 5-min pressure treatment of 350 MPa at 30°C inactivated 1.15 log10 PFU of virus, while the same treatment at 5°C resulted in a reduction of 5.56 log10 PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5°C and 20°C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5°C was sufficient to inactivate 4.05 log10 PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.  相似文献   

9.
10.
The effectiveness of the adenovirus vaccine inactivation process in destroying the tumorigenic potential for hamsters of adenoviruses, simian virus 40 (SV-40), and adenovirus-SV-40 hybrids was studied. Baby hamsters injected with untreated virus and with samples subjected to the complete inactivation process and to portions of the process were observed for tumor development for periods in excess of 300 days. Over 20,000 hamsters were injected. From 1 to 7 hr of exposure to formaldehyde at a concentration of 0.031 m at 37 C was sufficient to destroy the tumorigenicity observed in the nontreated preparations. Since the inactivation process included 48 hr of exposure at 37 C to 0.031 m formaldehyde plus treatment with ultraviolet (UV) and with beta-propiolactone (BPL), it was concluded that the process has a large margin of safety. Adenovirus isolates free from tumorigenic potential are difficult, if not impossible, to obtain. Therefore, a proven inactivation process appears to provide the best assurance for obtaining adenovirus vaccines free from such potential. Data presented suggest that the tumorigenic property of the viruses studied might be independent of the infectivity of the preparation. The tumorigenic property was found to be highly susceptible to formaldehyde, but less sensitive to BPL or UV treatment. In contrast, treatment with UV or BPL decreased viral infectivity more readily than tumorigenicity. The three-stage inactivation process (formaldehyde, UV, and BPL) inactivated both tumorigenicity and infectivity.  相似文献   

11.
12.
13.
High-pressure processing (HPP) has been shown to be an effective means of eliminating bacteria and destructive enzymes from a variety of food products. HPP extends the shelf life of products while maintaining the sensory features of food and beverages. In this study, we examined the effects of HPP on the infectivity of Encephalitozoon cuniculi spores in vitro. Spores were exposed to between 140 and 550 MPa for 1 min in a commercial HPP unit. Following treatment, the spores were loaded onto cell culture flasks or were kept for examination by transmission electron microscopy. No effect was observed on the infectivity of spores treated with 140 MPa. Spores treated with between 200 and 275 MPa showed reduction in infectivity. Following treatment of 345 MPa or more, spores were unable to infect host cells. No morphologic changes were observed in pressure-treated spores with transmission electron microscopy.  相似文献   

14.
Norovirus, a member of the Caliciviridae family, is a major causative agent of gastroenteritis worldwide. The cDNA of the entire genome of human norovirus (HuNV) was cloned using the RNA extracted from the stool sample of a Korean patient. The RNA genome consists of 7,559 nucleotides, carries 3 open reading frames (ORFs), 5 and 3 noncoding regions, and a poly(A) tail at the 3 end. Phylogenic analysis of the nucleotide sequence indicated that it belongs to GII.4, the most dominant genogroup. To analyze RNA synthesis and nucleotidylylation of VPg by RNA-dependent RNA polymerase (RdRp), recombinant RdRp and VPg were expressed in Escherichia coli as His-tagged forms. The HuNV RdRp exhibited template and divalent cation-dependent RNA synthesis in vitro. The HuNV RdRp nucleotidylylated HuNV VPg but not murine norovirus (MNV) VPg, whereas MNV RdRp nucleotidylylated both MNV and HuNV VPg more efficiently than HuNV RdRp.  相似文献   

15.
The infectious agents causing transmissible spongiform encephalopathies (TSEs), sometimes called prions, are notoriously difficult to completely inactivate or destroy. Here we tested a thermal hydrolysis system which combines saturated steam heating to 180 °C (10 bar), with stirring. The 301V-TSE strain, which has been derived by passage of BSE in mice, was used since it is the most thermostable TSE strain tested so far. All detectable TSE infectivity was destroyed, with a clearance factor of greater than 105 ID50. The use of this technology for the decontamination of TSE infected tissue waste and the potential uses of the end-products are discussed.  相似文献   

16.
Murine norovirus (MNV) is presently the only member of the genus Norovirus in the Caliciviridae that can be propagated in cell culture. The goal of this study was to elucidate the proteolytic processing strategy of MNV during an authentic replication cycle in cells. A proteolytic cleavage map of the ORF1 polyprotein was generated, and the virus-encoded 3C-like (3CL) proteinase (Pro) mediated cleavage at five dipeptide cleavage sites, 341E/G342, Q705/N706, 870E/G871, 994E/A995, and 1177Q/G1178, that defined the borders of six proteins with the gene order p38.3 (Nterm)-p39.6 (NTPase)-p18.6-p14.3 (VPg)-p19.2 (Pro)-p57.5 (Pol). Bacterially expressed MNV 3CL Pro was sufficient to mediate trans cleavage of the ORF1 polyprotein containing the mutagenized Pro sequence into products identical to those observed during cotranslational processing of the authentic ORF1 polyprotein in vitro and to those observed in MNV-infected cells. Immunoprecipitation and Western blot analysis of proteins produced in virus-infected cells demonstrated efficient cleavage of the proteinase-polymerase precursor. Evidence for additional processing of the Nterm protein in MNV-infected cells by caspase 3 was obtained, and Nterm sequences 118DRPD121 and 128DAMD131 were mapped as caspase 3 cleavage sites by site-directed mutagenesis. The availability of the MNV nonstructural polyprotein cleavage map in concert with a permissive cell culture system should facilitate studies of norovirus replication.  相似文献   

17.
18.
Global expression analysis of fetal liver hematopoietic stem cells (FL HSCs) revealed the presence of unspliced pre-mRNA for a number of genes in normal FL HSCs. In a subset of these genes, Crebbp+/- FL HSCs had less unprocessed pre-mRNA without a corresponding reduction in total mRNA levels. Among the genes thus identified were the key regulators of HSC function Itga4, Msi2 and Tcf4. A similar but much weaker effect was apparent in Ep300+/- FL HSCs, indicating that, in this context as in others, the two paralogs are not interchangeable. As a group, the down-regulated intronic probe sets could discriminate adult HSCs from more mature cell types, suggesting that the underlying mechanism is regulated with differentiation stage and is active in both fetal and adult hematopoiesis. Consistent with increased myelopoiesis in Crebbp hemizygous mice, targeted reduction of CREBBP abundance by shRNA in the multipotent EML cell line triggered spontaneous myeloid differentiation in the absence of the normally required inductive signals. In addition, differences in protein levels between phenotypically distinct EML subpopulations were better predicted by taking into account not only the total mRNA signal but also the amount of unspliced message present. CREBBP thus appears to selectively influence the timing and degree of pre-mRNA processing of genes essential for HSC regulation and thereby has the potential to alter subsequent cell fate decisions in HSCs.  相似文献   

19.
Noroviruses are important human pathogens responsible for most cases of viral epidemic gastroenteritis worldwide. Murine norovirus-1 (MNV-1) is one of several murine noroviruses isolated from research mouse facilities and has been used as a model of human norovirus infection. MNV-1 infection has been shown to require components of innate and adaptive immunity for clearance; however, the initial host protein that recognizes MNV-1 infection is unknown. Because noroviruses are RNA viruses, we investigated whether MDA5 and TLR3, cellular sensors that recognize dsRNA, are important for the host response to MNV-1. We demonstrate that MDA5-/- dendritic cells(DC) have a defect in cytokine response to MNV-1. In addition, MNV-1 replicates to higher levels in MDA5-/- DCs as well as in MDA5-/- mice in vivo. Interestingly, TLR3-/- DCs do not have a defect in vitro, but TLR3-/- mice have a slight increase in viral titers. This is the first demonstration of an innate immune sensor for norovirus and shows that MDA5 is required for the control of MNV-1 infection. Knowledge of the host response to MNV-1 may provide keys for prevention and treatment of the human disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号