首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract ‘Alpine grazing reduces blazing’ is a widely and strongly held view concerning the effects of livestock grazing on fuels, and therefore fire behaviour and impact, in Australia's high country landscapes. As a test of this hypothesis, we examined the patterns of burning across the alpine (treeless) landscapes of the Bogong High Plains in Victoria, following the extensive fires of January 2003. Data were collected from multiple transects, each 3–5 km long, with survey points located randomly at either 50, 200 or 500 m intervals. The transects traversed the major regions of the Bogong High Plains, both grazed and ungrazed. At each point, we recorded whether the point was burnt or unburnt, the vegetation type (closed‐heath, open‐heath, grassland or herbfield), the estimated prefire shrub cover, slope, aspect, and a GPS location. At burnt heathland sites, we recorded the minimum twig diameter (an a posteriori measure of fire severity) in a sample of common shrubs. In total, there were 108 km of transect lines, 419 survey points and 4050 twig measurements, with sample points equally distributed across grazed and ungrazed country. The occurrence of fire (i.e. burnt or unburnt) in grazed and ungrazed areas was analysed by logistic regression; the variation in twig diameters by anova . Approximately half of all points were burnt. There was no statistically significant difference between grazed and ungrazed areas in the proportion of points burnt. Fire occurrence was determined primarily by vegetation type, with the proportion burnt being 0.87 for closed‐heath, 0.59 for open‐heath, and 0.13 for grassland and all snow‐patch herbfield points unburnt. In both closed‐heath and open‐heath, grazing did not significantly lower the severity of fire, as measured by the diameter of burnt twigs. We interpret the lack of a grazing effect in terms of shrub dynamics (little or no grazing effect on long‐term cover of taller shrubs), diet and behaviour of cattle (herbs and dwarf shrubs eaten; tall shrubs not eaten and closed‐heath vegetation generally avoided), and fuel flammability (shrubs more flammable than grass). Whatever effects livestock grazing may have on vegetation cover, and therefore fuels in alpine landscapes, they are likely to be highly localized, with such effects unlikely to translate into landscape‐scale reduction of fire occurrence or severity. The use of livestock grazing in Australian alpine environments as a fire abatement practice is not justified on scientific grounds.  相似文献   

2.
We describe and analyse how large herbivores strongly diminished a woody vegetation, dominated by the unpalatable shrub Sambucus nigra L. and changed it into grassland. Density of woody species and cover of vegetation were measured in 1996, 2002 and 2012 in the grazed Oostvaardersplassen. In 2002 and 2012 we also measured density and cover in an ungrazed control site. In 2002 we measured intensity of browsing and bark loss of Sambucus shrubs in the grazed and control sites. In the grazed site the density of Sambucus and Salix spp. declined significantly between 1996 and 2012, and large areas changed into grassland. In the control site the density of Sambucus increased significantly during this period, the density of Salix spp. did not change, and the vegetation consisted of a mixture of woody species and a field layer dominated by tall herbs. In 2002 and 2012 the percentages of dead Sambucus shrubs were significantly higher in the grazed site than in the control site. In 2002 the percentages of twigs browsed and ring barked stems of Sambucus shrubs were significantly higher in the grazed site than in the control site. Our results show that debarking caused mature Sambucus shrubs to die, but that heavy browsing may have helped this process. Our results also point to a significant neighbour effect on the break down of Sambucus, suggesting that Aggregational Resistance and Associational Palatability were both active. Essential conditions for the break down of this woody vegetation were the presence of large herbivores, the low ratio between the areas of summer and winter feeding habitats and the competition amongst herbivores. Browsing may have been responsible for seedling death, as seedlings were found only in the control site and not on the old and newly established grasslands in the grazed site.  相似文献   

3.
The dwarf shrub Indigofera spinosa , indigenous to arid and semi-arid rangelands of northeastern Africa, is an important food source for livestock. Proper management of the shrub requires improved understanding of the effects of grazing and climatic variability on aboveground dry-matter allocation. Between 1986 and 1990, we compared the temporal variability of aboveground dry-matter allocation to different plant biomass compartments. We also compared dry-matter transfers between components; total live biomass to litter, standing dead to litter and live biomass to standing dead between continuously grazed and an ungrazed treatments. Partitioning of combined total dry-matter production among different structural organs (called allocation ratio) is influenced by phenological changes, episodic rainfall and her-bivory. Dry-matter production in the grazed treatment responded more markedly to episodic rainfall events more than in the ungrazed treatment. Exclusion of grazers failed to improve the relative growth rate (RGR) of shrub biomass, while grazing improved it. RGR declined in the ungrazed treatment following the accumulation of standing dead dry-matter, while m the grazed treatment it declined following the shedding of leaves. The shrub allocated more to total live biomass than to standing dead. Greater reduction of total live allocation ratio in the grazed than in the ungrazed treatment occurred during a dry year. The ungrazed treatment had higher standing dead allocation ratio than did the grazed treatment. Plants transferred more dry-matter from total live biomass compartment to litter, than from standing dead to or from total live biomass to standing dead independent of treatment. The rates of transfer were higher in the ungrazed than in the grazed treatment. The results suggest that I spinosa has evolved to respond to climatic variability and grazmgbyallocating dry allocating dry-matter differently between various compartments.  相似文献   

4.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

5.
Abstract. Long-term (45-yr) basal area dynamics of dominant graminoid species were analyzed across three grazing intensity treatments (heavily grazed, moderately grazed and ungrazed) at the Texas A&M University Agricultural Research Station on the Edwards Plateau, Texas. Grazing intensity was identified as the primary influence on long-term variations in species composition. Periodic weather events, including a severe drought (1951–1956), had little direct influence on composition dynamics. However, the drought interacted with grazing intensity in the heavily grazed treatment to exacerbate directional changes caused by grazing intensity. Species response to grazing was individualistic and noisy. Three response groups were identified. Taller, more productive mid-grasses were most abundant under moderate or no grazing. Short grasses were most abundant under heavy grazing. Intermediate species were most abundant under moderate grazing and opportunistic to weather patterns. Graminoid diversity increased with the removal or reduction of grazing intensity. The moderately and ungrazed treatments appeared most resistant to short-term weather fluctuations, while the heavily grazed treatment demonstrated significant resilience when grazing intensity was reduced after over 110 yr of overgrazing. Identification of a ‘climax’ state is difficult. Significant directional change, which took nearly 20 yr, appears to continue in the ungrazed treatment after 45 yr of succession. The observed, relatively linear patterns of perennial grass composition within the herbaceous patches of this savanna were generally explained by traditional Clementsian succession. However, when dynamics of the herbaceous community are combined with the woody component of this savanna, the frequency and intensity of fire becomes more important. Across the landscape, successional changes follow several pathways. When vegetation change is influenced by several factors, a multi-scale model is necessary to demonstrate interactions and feedbacks and accurately describe successional patterns. Absence of fires, with or without grazing, leads ultimately to a Juniperus/Quercus woodland with grazing intensity primarily influencing the fuel load and hence fire intensity.  相似文献   

6.

Naturalistic grazing by large herbivores is an increasingly practiced way of managing habitats with conservational value. It has the potential to restore and enhance biodiversity, creating self-sustainable environments vital for organisms requiring regular disturbances to moderate and/or reverse successional changes. European bison, Exmoor pony, and Tauros cattle were introduced in 2015 to a former military training area in Milovice, Czech Republic. The prevailing vegetation type is a forest-steppe savanna with Bromus erectus-dominated xeric grasslands mixed with deciduous shrubs and trees. After the cessation of military use, the area was abandoned which led to successional changes, including the dominance of tall grasses, litter accumulation, and bush encroachment. In 2017–2021, we monitored grassland vegetation in 30 grazed permanent plots (2?×?2 m) and 5 control plots representative of ungrazed, abandoned vegetation adjacent to the grazed areas. Naturalistic grazing increased species richness and the cover of forbs, while the cover of grasses and legumes was minimally affected. Grazing increased functional diversity of plant community, promoted a compositional change to small statured species and an increased incidence of red-list species. Seven years of continuous grazing increased the conservation value of this forest-steppe vegetation, a habitat type rapidly declining in Europe.

  相似文献   

7.
Aim To determine how responses of an established velvet mesquite (Prosopis velutina Woot.) population to a 2002 wildfire were shaped by grazing and non‐native herbaceous species invasions, both of which influenced fire behaviour. Location The study was conducted on contiguous ranches (one actively grazed by cattle, one that had not been grazed since 1968) in the Sonoita Valley of southern Arizona. Plant communities on both ranches were comprised of Chihuahuan semi‐desert grassland, savanna, and Madrean evergreen woodland ecosystems, but large areas were dominated by Lehmann and Boer lovegrass, African grass species that were introduced more than 50 years ago. Methods We selected 243 individuals that had been defoliated and bark scorched during the fire using a stratified random design based on pre‐fire grazing status and dominant grass cover. After the start of the 2003 growing season, we recorded individual tree characteristics, fire damage, and measures of post‐fire response, and tested for relationships among classes of: grazing status, bark damage, dominant grass cover type, abundance of live and dead aboveground branches, flowering status, and sprout number and size. Analyses of fire damage and post‐fire response were interpreted with respect to values of fireline intensity, scorch height and energy release that were projected by a fire behaviour model, nexus . Results Nearly all of the trees on grazed areas suffered low levels of fire damage, while a majority on ungrazed areas suffered moderate to severe damage. Trees on grazed areas consequently had significantly more leaf‐bearing twigs and branches in 2003 but a very low number of root sprouts, while individuals on ungrazed areas had a greater density of root sprouts but little post‐fire dead branching and almost no living branches. Among the ungrazed grassland types, more than 75% of the trees on Boer lovegrass plots suffered moderate to severe damage, while a similar percentage of trees in native grass areas suffered low damage. These differences were: (1) attributed to variations in fire characteristics that were caused by differences in litter production and removal, and (2) ecologically significant because trees in the severe damage class showed almost no aboveground post‐fire branching, either live or dead in 2003, while trees in the low damage class exhibited a greater amount of both. Main conclusions Our results affirm the notion that effective management of western grasslands where mesquite encroachment has or will become a problem requires a better understanding of how interactions among key ecosystem influences (e.g. fire, grazing, non‐native species) affect not only mesquite seedlings and saplings but also larger, established individuals and thereby the long‐term structure and functioning of semi‐desert grassland ecosystems. As managers shift their focus from eradication to management of mesquite in western grasslands and savannas, our results provide insights into how prescribed fires (and their effects on mesquite populations) differ from wildfires and how such effects may be mediated by the altered land uses and ecosystem characteristics that now exist in many western ecosystems.  相似文献   

8.
In arid environments, direct facilitation (microhabitat amelioration) and indirect facilitation (‘associational resistance’ via protection from herbivory) among plants of different species may act simultaneously. Little is known about their relative effects. One way to disentangle the effects is by evaluating spatial associations. We examined the relative importance of these two mechanisms of facilitation in the semiarid Chaco vegetation of north‐central Argentina, through an eight‐way observational study in which we quantified the degree of spatial association between saplings of each of two key tree species, Schinopsis lorentzii (Anacardiaceae) and Aspidosperma quebracho‐blanco (Apocynaceae), with shrub neighbours either possessing spines or without spines and in both an ungrazed site and a site with a long history of cattle grazing. We analysed data across 400 subparcels at each site with spatial analysis by distance indices. Saplings of both tree species showed positive spatial associations with spiny shrubs in the grazed site but not in the ungrazed site, and never with non‐spiny shrubs. This result suggests that spiny shrubs may indeed provide associational resistance for saplings of key tree species in grazed habitats in these dry subtropical forests, that is, that indirect facilitation may predominate over direct facilitation. If confirmed by experimental studies, this result can have implications for the silvopastoral management of rapidly expanding ranches in the semiarid Chaco, where current practice includes the near elimination of native shrubs.  相似文献   

9.
Question: Thorny shrubs play keystone roles in grazed ecosystems by defending non‐protected plants against herbivores, but their establishment in grazed ecosystems is poorly understood. Which factors control establishment of recruits of thorny nurse shrubs in grazed temperate woodlands? Location: Ancient grazed temperate woodlands (52°32′N, 6°36′E), The Netherlands. Methods: We surveyed biotic and abiotic factors for saplings of thorny nurse shrubs in plots with and without saplings. To disentangle these factors, we performed a transplantation experiment over two growing seasons with nurse shrub saplings (Prunus spinosa and Crataegus monogyna) planted in two dominant vegetation types – tall unpalatable swards and short grazed lawns – half of them protected from herbivory via exclosures. Results: Plots with shrub saplings had taller surrounding vegetation, higher soil pH and higher soil moisture than plots without saplings. These plots predominantly contained unpalatable sward species, while plots without saplings mainly contained palatable lawn species. After transplantation, sapling survival was higher in exclosures than in the open, and higher in sward exclosures than in lawn exclosures. Sapling growth was higher in swards than in lawns, higher inside than outside exclosures, and higher for Prunus than Crataegus, while browsing on saplings was higher in lawns. Conclusion: Unpalatable swards form essential establishment niches for thorny shrubs in grazed temperate woodlands: they protect against herbivores before thorns fully develop in saplings, and sapling growth is better due to improved micro‐environmental conditions. Once established and thorny, shrub saplings grow out of the protective range of the swards and in turn facilitate tree seedlings, which are essential for long‐term persistence of grazed temperate woodlands. This study shows that nurse plants may start as protégés before becoming facilitators for other plants in a later life stage. This may be common for nurse plants in various ecosystems. We argue that improved understanding of establishment of nurse plants and their constraining factors is crucial for effective conservation and restoration in various ecosystems.  相似文献   

10.
We examined the effect of native large herbivores on aboveground primary production of nonforested habitat in Yellowstone National Park, Wyoming. Productivity of vegetation grazed by elk (Cervus elaphus) and bison (Bison bison) was compared with that of ungrazed (permanently fenced) vegetation at four sites. Two methods were used that, we believed, would provide the most accurate measurements under the different grazing regimes encountered in the study. Production of ungrazed vegetation in permanent exclosures (10×10 m or 15×15 m, 3 per site) and that of vegetation that was grazed only in the winter was taken as peak standing crop. Production of vegetation grazed during the growing season was the sum of significant increments (P<0.05) in standing crop inside temporary exclosures (1.5×1.5 m, 6 per site) moved every four weeks to account for herbivory.Aboveground productivity of grazed vegetation was .47% higher than that of ungrazed vegetation across sites (P<0.0003). This result could be explained by either a methodological or grazer effect. We believe it was the latter. Results from a computer simulation showed that sequential sampling with temporary exclosures resulted in a slight underestimation of production, suggesting that the reported differences between treatments were conservative. We suggest that stimulation of aboveground production by ungulates may be, in part, due to the migratory behavior of native ungulates that track young, high quality forage as it shifts spatially across the Yellowstone ecosystem.  相似文献   

11.
Worldwide, savanna remnants are losing acreage due to species replacement with shade-tolerant midstory forest species as a response to decades of fire suppression. Because canopy closes grasses and other easily ignitable fuels decline, therefore, fire, when reintroduced after years of absence, is not always effective at restoring the open structure original to these communities. Our study sought to determine if managed grazing is an alternative tool for reducing shrub densities and restoring savanna structure without the impacts on soils and native vegetation observed with unmanaged grazing. We compared effects of fire and managed grazing on shrub and herb composition within degraded oak savanna and tallgrass prairie of the U.S. Upper Midwest using a randomized complete block design. The vegetation response to treatments differed by species and by vegetation type. Total shrub stem densities declined 44% in grazed and 68% in burned paddocks within savanna and by 33% for both treatments within prairie. Within savanna, cattle reduced stem densities of Rubus spp. 97%, whereas fire reduced Ribes missouriense stems 96%. Both fire and grazing were effective at reducing stem numbers for several other shrub species but not to the same degree. Native forbs were suppressed in grazed savanna paddocks, as were native grasses in grazed prairie paddocks along with a minor increase of exotic forbs. We did not observe changes in soil bulk density. We conclude that managed grazing can serve as a valuable supplement but not as a replacement to fire for controlling shrubs in these systems.  相似文献   

12.
Terrestrial vertebrates exhibit dynamic, positive interactions that form and dissolve under different circumstances, usually with multiple species as participants. Ecosystem engineers are important facilitators of other species because they cause physical changes in the environment that alter resource availability. Although a species can be associated with more than one partner, facilitators may not be interchangeable if they differ in abundance, behavioral characteristics, or interactions with other factors in ways that condition the outcome of the association. We examined interactions between burrowing owls (Athene cunicularia) and two burrowing mammals, hairy armadillos (Chaetophractus villosus) and plains vizcachas (Lagostomus maximus), and determined whether these ecosystem engineers are interchangeable for owls. We examined reproductive success for owls nesting in these mammal burrows, constructed a logistic regression model to identify habitat characteristics associated with owl nests, and examined the engineering activities of the mammals. Data on reproduction and habitat indicate that armadillos and vizcachas are not interchangeable for owls. Thirty-five percent of the nests in vizcacha burrows produced fledglings; no fledglings were produced from nests outside vizcachas colonies, even though owls nest successfully in armadillo burrows in other parts of Argentina. Vizcachas facilitate burrowing owls by construction of burrows and by producing open understory vegetation through herbivory. In contrast, armadillos do not alter vegetation, and their burrows are suitable for nest sites only when they occur in recently burned areas or areas maintained by anthropogenic disturbance. Our habitat model also suggests that fire plays a key role in maintaining owl populations because fire is the only natural process that reduces shrubs to the level required by owls. Current management practices of eradication of vizcachas and fire suppression in shrublands could have strong negative consequences for burrowing owls.  相似文献   

13.
Abstract. N, P and K dynamics were investigated in grazed and ungrazed alpine forb and grassy meadows in the Garhwal Himalaya. The growth forms examined were dwarf shrubs, forbs and graminoides. N, P and K contents were determined for various plant components and soil. The contribution of plant parts to the total vegetation capital of N, P and K was 20–33% (live shoot), 6–8% (dead shoot), 2–3% (litter) and 56–71% (root) in ungrazed plots, and 16–27, 6–7, 1–2, and 64–76% respectively in grazed plots. Grazing removed between 41–69% of total uptake of nutrients from the grassland. In protected areas, however, 65 to 81% of all nutrients were retained by the vegetation. This retention of nutrients is due to translocation to roots and rhizomes and is considered beneficial during grazing as it aids resprouting of the vegetation.  相似文献   

14.
Abstract. Spatial heterogeneity, an important characteristic in semi‐arid grassland vegetation, may be altered through grazing by large herbivores. We used Moran's I, a measure of autocorrelation, to test the effect of livestock grazing on the fine scale spatial heterogeneity of dominant plant species in the shortgrass steppe of northeastern Colorado. Autocorrelation in ungrazed plots was significantly higher than in grazed plots for the cover of the dominant species Bouteloua gracilis, litter cover and density of other bunchgrasses. No species had higher autocorrelation in grazed compared to ungrazed sites. B. gracilis cover was significantly auto‐correlated in seven of eight 60‐yr ungrazed exclosures, four of six 8‐yr exclosures, and only three of eight grazed sites. Autocorrelograms showed that B. gracilis cover in ungrazed sites was frequently and positively spatially correlated at lag distances less than 5 m. B. gracilis cover was rarely autocorrelated at any sampled lag distance in grazed sites. The greater spatial heterogeneity in ungrazed sites appeared linked to patches characterized by uniformly low cover of B. gracilis and high cover of C3 grasses. This interpretation was supported by simple simulations that modified data from grazed sites by reducing the cover of B. gracilis in patches of ca. 8 m diameter and produced patterns quite similar to those observed in ungrazed sites. In the one exclosure where we intensively sampled soil texture, autocorrelation coefficients for sand content and B. gracilis cover were similar at lag distances up to 12 m. We suggest that the negative effect of sand content on B. gracilis generates spatial heterogeneity, but only in the absence of grazing. An additional source of heterogeneity in ungrazed sites may be the negative interaction between livestock exclusion and B. gracilis recovery following patchy disturbance.  相似文献   

15.
Different disturbances in similar habitats can produce unique successional assemblages of plants. We collected plant species composition and cover data to investigate the effects of three common types of disturbances—fire, anthropogenic clearing (‘cleared’), and clearing followed by goat grazing (‘cleared‐and‐grazed’)—on early‐successional coppice (dry forest) community structure and development on Eleuthera, Bahamas. For each disturbance type, both the ground layer (<0.5 m height) and shrub layer (>0.5 m height) were sampled in eight patches (>1 ha) of varying age (1–28 yr) since large‐scale mature coppice disturbance. Overall, plant communities differed among disturbance types; several common species had significantly higher cover in the shrub layer of fire patches, and cleared‐and‐grazed patches exhibited higher woody ground cover. Total percent cover in the shrub layer increased in a similar linear fashion along the investigated chronosequence of each disturbance type; however, cover of the common tree species, Bursera simaruba, increased at a notably slower rate in cleared‐and‐grazed patches. The pattern of increase and subsequent decrease in cover of Lantana spp. and Zanthoxylum fagara in the shrub layer was characterized by longer persistence and higher covers, respectively, in cleared‐and‐grazed patches, which also exhibited low peak cover and fast decline of nonwoody ground cover. Our results suggest that goats may accelerate some aspects of succession (e.g., quickly removing nonwoody ground cover) and retard other aspects (e.g., inhibiting growth of tree species and maintaining early‐successional shrubs in the shrub layer). These effects may lead to different successional trajectories, and have important conservation implications.  相似文献   

16.
Abstract. A regional vegetation survey of the temperate grassy woodlands (temperate savanna) in Australia was designed to assess the effects of clearing and grazing on the composition of vegetation remnants and the adjacent pasture matrix. Vegetation was sampled across a range of habitats using 77 0.1024‐ha quadrats; the relative abundance of species was recorded. Classification analysis clustered the sites into three main groups that corresponded to intensity of grazing/clearing followed by groups based on underlying lithology (basalt, metasediment, granites). Using Canonical Correspondence Analysis, exogenous disturbance and environmental variables were related to the relative abundance of species; grazing intensity had the highest eigenvalue (0.27) followed by tree canopy cover (0.25), lithology (0.18), altitude (0.17) and slope (0.10). Based on two‐dimensional ordination scores, six species response groups were defined relating to intensity of pastoralism and nutrient status of the landscape. Abundance and dominance of native shrubs, sub‐shrubs, twiners and geophytes were strongly associated with areas of less‐intense pastoralism on low‐nutrient soils. The strongest effects on species richness were grazing followed by canopy cover. Continuously grazed sites had lower native species richness across all growth forms except native grasses. There was no indication that intermediate grazing intensities enhanced forb richness as a result of competitive release. Species richness for all native plants was lowest where trees were absent especially under grazed conditions. Canopy cover in ungrazed sites appeared to promote the co‐existence of shrubs with the herbaceous layer. Predicted declines in forb richness in treeless, ungrazed, sites were not detected. The lack of a disturbance‐mediated enhancement of the herbaceous layer was attributed to habitat heterogeneity at 0.1 ha sampling scale.  相似文献   

17.
Abstract. In southern France, the natural invasion by Quercus humilis of calcareous grassland takes place in a mosaic of herbaceous and scrubby patches. We hypothesized that the presence of the shrubs Buxus sempervirens and Juniperus communis alter the rate and the pathway of the succession by facilitating the regeneration of Q. humilis. To infer the process of facilitation at a large scale, the spatial distribution of Q. humilis was studied in relation to acorn sources and the type of plant cover in grazed and ungrazed sites. Abundant recruitment up to 80 m from the wood margins and from isolated oak trees in grassland shows that acorns are dispersed effectively. At the three study sites, the density of Q. humilis individuals was higher under shrubs than in grassland, suggesting that facilitation may occur. This density difference was much higher in the grazed sites than in the ungrazed site. Moreover, before grazing by livestock, the distribution of first-year seedlings is independent of vegetation cover. Thus, shrubs improve Q. humilis regeneration by protecting individuals from grazing. The high density of individuals at the northern edge of shrubs suggests that a second facilitation mechanism may exist, probably related to improved germination conditions. Facilitation by shrubs appears to be very important for Q. humilis dynamics.  相似文献   

18.
Human activities are changing patterns of ecological disturbance globally. In North American deserts, wildfire is increasing in size and frequency due to fuel characteristics of invasive annual grasses. Fire reduces the abundance and cover of native vegetation in desert ecosystems. In this study, we sought to characterize stem growth and reproductive output of a dominant native shrub in the Mojave Desert, creosote bush (Larrea tridentata (DC.) Coville) following wildfires that occurred in 2005. We sampled 55 shrubs along burned and unburned transects 12 years after the fires (2017) and quantified age, stem diameter, stem number, radial and vertical growth rates, and fruit production for each shrub. The shrubs on the burn transects were most likely postfire resprouts based on stem age while stems from unburn transects dated from before the fire. Stem and vertical growth rates for shrubs on burned transects were 2.6 and 1.7 times higher than that observed for shrubs on unburned transects. Fruit production of shrubs along burned transects was 4.7‐fold more than shrubs along paired unburned transects. Growth rates and fruit production of shrubs in burned areas did not differ with increasing distance from the burn perimeter. Positive growth and reproduction responses of creosote following wildfires could be critical for soil stabilization and re‐establishment of native plant communities in this desert system. Additional research is needed to assess if repeat fires that are characteristic of invasive grass‐fire cycles may limit these benefits.  相似文献   

19.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

20.
We examined spatial patterns of fire-caused mortality and after-fire establishment of two dominant shrub species, Baccharis dracunculifolia and Eupatorium buniifolium in a humid temperate South American savannah. Our objective was to determine whether fires mediate in interactions between these two species. After a natural fire burned a large tract of savannah, we established two plots (respectively 550 and 500 m2) within which we mapped all surviving and dead shrubs as well as all individuals of shrub species that recruited in the following year. We used techniques of point-pattern analysis to test specific null hypotheses about spatial associations in the distribution, mortality, and establishment of shrubs. Results support the notions that fire mediates interactions between these two species. Fire-caused death of E. buniifolium tended to occur selectively in the vicinities of Baccharis individuals, and recruitment of B. dracunculifolia tended to be concentrated in the places of dead shrubs. These responses, however, were contingent on local abundances of shrubs which depend in part from the recent fire history. Anthropogenic perturbation of the natural fire regime would have therefore distorted the role of fire mediated interactions as drivers of the dynamics of the vegetation of this temperate savannah.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号