首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protease-activated receptor-2 (PAR2) is a 7-transmembrane G-protein-coupled tethered ligand receptor that is expressed by pancreatic acinar and ductal cells. It can be physiologically activated by trypsin. Previously reported studies (Namkung, W., Han, W., Luo, X., Muallem, S., Cho, K. H., Kim, K. H., and Lee, M. G. (2004) Gastroenterology 126, 1844-1859; Sharma, A., Tao, X., Gopal, A., Ligon, B., Andrade-Gordon, P., Steer, M. L., and Perides, G. (2005) Am. J. Physiol. 288, G388-G395) have shown that PAR2 activation exerts a protective effect on the experimental model of pancreatitis induced by supramaximal secretagogue (caerulein) stimulation. We now show that PAR2 exerts a worsening effect on a different model of experimental pancreatitis, i.e. one induced by retrograde pancreatic ductal infusion of bile salts. In vitro studies using freshly prepared pancreatic acini show that genetic deletion of PAR2 reduces bile salt-induced pathological calcium transients, acinar cell injury, and activation of c-Jun N-terminal kinase, whereas genetic deletion of PAR2 has the opposite or no effect on these pancreatitis-related events when they are elicited, in vitro, by caerulein stimulation. Studies employing a combination of trypsin inhibition and activation of PAR2 with the activating peptide SLIGRL show that all these differences indeed depend on the activation of PAR2. These studies are the first to report that a single perturbation can have model-specific and opposite effects on pancreatitis, and they underscore the importance of performing mechanistic pancreatitis studies using two dissimilar models of the disease to detect idiosyncratic, model-specific events. We suggest PAR2 activation exerts a worsening effect on the severity of clinical pancreatitis and that interventions interfering with PAR2 activation may be of benefit in the treatment of patients with severe pancreatitis.  相似文献   

2.
Abstract. In heavily altered landscapes, where vegetation is not natural and where people are the main source of ignitions, relationships between fire occurrence and climate conditions may be unclear. The objective of this study was to evaluate to what extent territories with similar Potential Natural Vegetation (PNV) in peninsular Spain differ in their forest fire characteristics. From 1974 to 1994, more than 174 000 fires occurred. We used (1) the Spanish data base of forest fires, (2) a PNV map and (3) a land use map. Separate fire characteristics, based either on the number of fires occurred or the area burned, were obtained for each of the ca. 5000 grid‐cells (10 km × 10 km) into which peninsular Spain is divided in the UTM projection. Also, meteorological conditions at the time of fire ignition, cause of ignition and present forest cover were referred to the same grid‐cells as external factors potentially determinant of fire occurrence. The relationships between fire regime characteristics and PNV units were explored with Principal Components Analysis (PCA). The role of the three sets of external factors in the fire characteristics was evaluated with Redundancy Analysis (RDA). Groups of similar PNV types were clearly segregated, suggesting a gradient of fire characteristics. Higher fire incidence (higher frequencies and spatial incidence of fires, but lower proportions of grid‐cells affected by large fires) was associated with Atlantic, warm territories with deciduous forests as PNV. Intermediate fire frequency and rotation period, but with a higher relative incidence of medium and large fires occurred in Mediterranean PNV units, dominated by sclerophyllous oak forests. Low fire frequency and long rotation periods, with strong seasonal and yearly variability occurred for PNV units in the cold uplands (Fagus, Pinus, Abies, Juniperus) or in the semi‐arid, shrubby PNV units. The cause of ignition best explained the patterns of forest fire characteristics, followed by weather conditions. Our results indicate that, even in human influenced regions, climate and soil conditions exert control on the resulting forest fire characteristics, as indicated by the high segregation of the PNV types. However, the role of man was crucial in shifting the patterns of fire incidence. This was so that highest fire incidence occurred in regions that, otherwise, would be expected to have a much lower one, thus posing a serious threat for such areas. PNV maps, by providing a phytogeographical framework for characterizing forest fires, could be valuable tools for applying research results to forest fire management policies, taking properly into account the underlying determinant factors.  相似文献   

3.
Habitat parameters as well as host density and distribution play an important role in host-parasitoid interactions. Vegetation structure can affect both, herbivorous insects searching for places for egg deposition and foraging egg parasitoids. Herbivores might escape egg parasitism by depositing their eggs on sites with vegetation factors unfavourable for host searching parasitoids. The importance of a particular vegetation parameter for the host-parasitoid relationship, however, might depend on the spatial scale. In this study the influence of vegetation structure on oviposition of the polyphagous tansy leaf beetle Galeruca tanaceti L. (Coleoptera: Chrysomelidae) and on egg parasitism by the specialist egg parasitoid Oomyzus galerucivorus was investigated on two spatial scales in the field. Factors like vegetation height and coverage, presence of host plants and microclimate were measured and correlated with presence of herbivore eggs as well as incidence or rate of parasitism. On a larger scale 25 sites (patch size = 300–2000 m2) of suitable semi-arid grassland in different successional stages were studied. The probability that egg clutches of G. tanaceti were present at a site increased with a decreasing area covered by shrubs. Parasitism rates on the macro-site scale showed the same trend and were also higher at sites with a lower percentage of shrubs covering the area.On a smaller scale vegetation structure was investigated using 40 patches (patch size = 1 m2). While the best predictor for the presence of beetle egg masses on this scale was the complexity of vegetation, parasitism was influenced by the presence of a host plant, Achillea millefolium, and a sunny microclimate.In Wirt-Parasitoid Interaktionen spielen Wirtsdichte und -verteilung, aber auch Habitat-Parameter eine wichtige Rolle. Die Vegetationsstruktur kann sowohl herbivore Insekten auf der Suche nach Ei- ablageplätzen als auch ihre Eiparasitoide auf der Suche nach Wirten beeinflussen. Herbivore Insekten könnten einer Eiparasitierung dadurch entgehen, dass sie ihre Eier an Orte legen, die für Parasitoide ungünstige Vegetations-Parameter aufweisen. Die Bedeutung eines Vegetations-Parameters auf die Wirt-Parasitoid Beziehung kann von der räumlichen Skala abhängen, die untersucht wird. Diese Arbeit untersucht den Einfluss der Vegetationsstruktur auf die Eiablage des polyphagen Rainfarnblattkäfers Galeruca tanaceti L. (Coleoptera: Chrysomelidae) und auf die Parasitierung durch den spezialisierten Ei-Parasitoiden Oomyzus galerucivorus auf zwei räumlichen Skalen im Freiland. Verschiedene Vegetations-Parameter wie die Vegetationshöhe, der Deckungsgrad, das Wirtspflanzenvorkommen und das Mikroklima wurden gemessen und mit dem Vorhandensein von Eigelegen und Parasitierung korreliert. Auf der großflächigen Skala wurden 25 Flächen (Größe = 300–2000 m2) semiariden Grasslands in verschiedenen Sukzessionsstadien untersucht. Die Wahrscheinlichkeit, dass Eigelege von G. tanaceti auf einer Fläche gefunden wurden nahm mit sinkendem Verbuschungsgrad zu. Die Parasitierungsrate auf der großflächigen Skala nahm ebenfalls mit sinkendem Verbuschungsgrad zu.Kleinflächig wurde die Vegetationsstruktur in 40 Quadraten (Größe = 1 m2) untersucht. Während die Eiablage des Käfers am stärksten von der Komplexität der Vegetation beeinflusst wurde, wurde die Parasitierungsinzidenz durch das Vorkommen der Wirtspflanze Achillea millefolium und durch ein sonniges Mikroklima bestimmt.  相似文献   

4.
High biodiversity is known to increase many ecosystem functions, but studies investigating biodiversity effects have more rarely looked at multi‐trophic interactions. We studied a tri‐trophic system composed of Centaurea jacea (brown knapweed), its flower head‐infesting tephritid fruit flies and their hymenopteran parasitoids, in a grassland biodiversity experiment. We aimed to disentangle the importance of direct effects of plant diversity (through changes in apparency and resource availability) from indirect effects (mediated by host plant quality and performance). To do this, we compared insect communities in C. jacea transplants, whose growth was influenced by the surrounding plant communities (and where direct and indirect effects can occur), with potted C. jacea plants, which do not compete with the surrounding plant community (and where only direct effects are possible). Tephritid infestation rate and insect load, mainly of the dominant species Chaetorellia jaceae, decreased with increasing plant species and functional group richness. These effects were not seen in the potted plants and are therefore likely to be mediated by changes in host plant performance and quality. Parasitism rates, mainly of the abundant chalcid wasps Eurytoma compressa and Pteromalus albipennis, increased with plant species or functional group richness in both transplants and potted plants, suggesting that direct effects of plant diversity are most important. The differential effects in transplants and potted plants emphasize the importance of plant‐mediated direct and indirect effects for trophic interactions at the community level. The findings also show how plant–plant interactions critically affect results obtained using transplants. More generally, our results indicate that plant biodiversity affects the abundance of higher trophic levels through a variety of different mechanisms.  相似文献   

5.
Question : How do interactions between rocky landscape features and fire regime influence vegetation dynamics? Location : Continental Eastern USA. Methods : We measured vegetation, disturbance and site characteristics in 40 pairs of rocky and non‐rocky plots: 20 in recently burned stands, and 20 in stands with no evidence of recent fire (‘unburned’ stands). Two‐way analysis of variance (ANOVA) was used to assess the main and interaction effects of fire and rock cover on plant community composition. Results : In burned stands, rock cover had a strong influence on vegetation. Non‐rocky ‘matrix’ forests were dominated by Quercus, and had abundant ground cover and advance regeneration of early and mid‐successional tree species. Burned rocky patches supported greater density of fire‐sensitive species such as Acer rubrum, Sassafras albidum and Nyssa sylvatica and had little advance regeneration or ground cover. Quercus had fewer fire scars and catfaces (open, basal wounds) on rocky patches, suggesting that rocky features mitigate fire severity. In unburned stands, differences between rocky and non‐rocky patches were less distinct, with both patch types having sparse ground cover, little tree regeneration, and high understorey densities of relatively shade tolerant A. rubrum, N. sylvatica and Betula lenta. Conclusion : Under a sustained fire regime, heterogeneity in rock cover created a mosaic where fire‐adapted species such as Quercus dominate the landscape, but where fire‐sensitive species persisted in isolated pockets of lower fire severity. Without fire, species and landscape richness may decline as early‐mid successional species are replaced by more shade tolerant competitors.  相似文献   

6.
In landscape ecology, substantial theoretical progress has been made in understanding how critical threshold levels of habitat loss may result in sudden changes in landscape connectivity to animal movement. Empirical evidence for such thresholds in real systems, however, remains scarce. Streambed landscapes provide a strong testing ground for studying critical thresholds because organisms are faced with substantial environmental heterogeneity while attempting to overcome the physical force of water. In this study, I report on the results from a series of experiments investigating the influence of habitat abundance and current velocity on the movement dynamics of two stream herbivores (caddisfly larva Agapetus boulderensis and snail Physa sp.) that differ substantially in how they perceive landscape structure. Specifically, I ask whether critical thresholds to herbivore movement exist in streambed landscapes. By exploiting the pattern recognition capabilities of artificial neural networks, I found that the rate, sinuosity and directionality of movement by Agapetus and Physa varied nonlinearly according to the abundance of habitat patches, current velocity and habitat-current interaction. Both the study organisms exhibited threshold responses to habitat abundance, yet the location and slope of these thresholds differed between species and with respect to different current velocities. These results suggest that a critical threshold in functional connectivity (i.e. the connection of habitat patches by dispersal) is not an inherent property of the landscape, but in fact emerges from the interplay of species' interactions with landscape structure. Moreover, current velocity interacted with habitat abundance to elicit strong upstream-oriented movement for both the species. This suggests that dispersing individuals may be polarized in the upstream direction and therefore functional connectivity is not equal in all directions. Such results highlight the need for future research addressing the sources of variability of critical threshold effects in ecological phenomena.  相似文献   

7.
Because of its high frequency and generally low intensity, fire in tropical savannas appears to be a different phenomenon from that in other biomes. A recent study of fire in savanna at Munmarlary in northern Australia, analysed by detrended correspondence analysis (DCA) concluded that different fire regimens resulted in negligible changes in the vegetation, a conclusion crucial for fire management in the region. Here, we describe the short-term impact of an unusually intense fire in an area of tropical open forest. Tree and shrub mortality of 14.3% was recorded within 6 months of the fire, and the composition of the vegetation was changed because of differences between species in mortality rates, which ranged from 4 to 90%. Analyses of variance (ANOVA) of DCA co-ordinates were unable to detect any change, however. DCA seems inappropriate for analysing vegetation changes after savanna fires, because the floristic changes, compared with those in temperate fire-prone ecosystems, are subtle and multidirectional. Further, it is shown that rather large plot sizes (2–4 ha) are likely to be required to detect fire treatment differences even as great as about 20% of the mean, given the variability of savanna vegetation, and replicates that are likely to be limited in number. A possible solution is to measure the change over time in permanent plots, rather than attempting to detect treatment differences by sampling on a single occasion.  相似文献   

8.
Calcareous grasslands in Europe have shown wide scale declines in their extent and quality as a result of modern agricultural practices, increased atmospheric eutrophication and lack of management. In addition to being a key habitat for specialist plants, calcareous grasslands are also important for many threatened invertebrates. In this UK based study, we investigated the impact of military vehicle activity, floral species richness and vegetation structure on assemblages of detritivore, herbivore and predatory invertebrates. We also consider the impact that disturbance by military vehicle activity on the proportion of invertebrate species capable of flight, a surrogate for dispersal ability. Sward height was negatively correlated with detritivore, herbivore and predator species richness. Herbivores species richness was positively correlated with both forb and grass species richness. Spatial variation in the number of plant species was negatively correlated with herbivore species richness. Those sites most heavily disturbed by military vehicle activity supported the lowest proportions of flightless invertebrates. Successful management for calcareous grassland invertebrates should aim to maintain short swards with high floristic diversity, in terms of both the forbs and grasses. It should be noted, however, that these findings refer to principally surface rather than sward active invertebrates. While disturbance associated with military vehicle activity was not found to affect invertebrate species richness, it has negative consequences for the structure of invertebrate assemblages by selecting against invertebrates with low dispersal ability. To support invertebrate diversity in calcareous grasslands we emphasise the need for variety in the timing and type of management applied to promote heterogeneity in sward structure.  相似文献   

9.
Nagamatsu  Dai  Miura  Osamu 《Plant Ecology》1997,133(2):191-200
To clarify vegetation-landform relationships, we examined the soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a mixed temperate forest in a hilly area in northeastern Japan. Soil profiles in each micro-landform unit were surveyed to elucidate the effects of soil disturbances on the vegetation structure. The hilly area studied consisted of an upper and a lower hillslope area divided by an erosion front, which differed considerably with respect to vegetation structure. In the upper hillslope area, canopy was closed and dominated by Pinus densiflora and Quercus serrata. In the lower hillslope area, on the other hand, canopy was less closed and shrubs, ferns, and herbaceous species were abundant. The species composition changed gradually from the crest slope to the upper sideslope to the head hollow in the upper hillslope area. However, micro-landforms in the lower hillslope area seemed to have less effect on the vegetation structure. This may be because the lower hillslope area, in contrast to the upper hillslope area, has suffered from soil disturbances, and hence shrubs, ferns, and herbs have developed irrespective of micro-landforms. Thus, vegetation can be quite different depending on whether or not sites have suffered from soil disturbance. In disturbed stands, it is suggested that the frequency and intensity of disturbance are more important for species composition than the type of soil disturbance.  相似文献   

10.

Question

Do the effects of fire regimes on plant species richness and composition differ among floristically similar vegetation types?

Location

Booderee National Park, south‐eastern Australia.

Methods

We completed floristic surveys of 87 sites in Sydney Coastal dry sclerophyll vegetation, where fire history records have been maintained for over 55 years. We tested for associations between different aspects of the recent fire history and plant species richness and composition, and whether these relationships were consistent among structurally defined forest, woodland and heath vegetation types.

Results

The relationship between fire regime variables and plant species richness and composition differed among vegetation types, despite the three vegetation types having similar species pools. Fire frequency was positively related to species richness in woodland, negatively related to species richness in heath, and unrelated to species richness in forest. These different relationships were explained by differences in the associations between fire history and species traits among vegetation types. The negative relationship between fire frequency and species richness in heath vegetation was underpinned by reduced occurrence of resprouting species at high fire frequency sites (more than four fires in 55 years). However, in forest and woodland vegetation, resprouting species were not negatively associated with fire frequency.

Conclusions

We hypothesize that differing relationships among vegetation types were underpinned by differences in fire behaviour, and/or biotic and abiotic conditions, leading to differences in plant species mortality and post‐fire recovery among vegetation types. Our findings suggest that even when there is a high proportion of shared species between vegetation types, fires can have very different effects on vegetation communities, depending on the structural vegetation type. Both research and management of fire regimes may therefore benefit from considering vegetation types as separate management units.  相似文献   

11.
12.
Fire is an extensively used wetland management tool in both tropical and temperate areas, but its effects on wetlands are not well understood. The purpose of this paper is to review the effects of fire on wetland hydrology, biogeochemical cycling and vegetation composition, including primary effects that take place during the fire such as combustion of plant material, loss of volatile substances to the atmosphere and deposition of ash on the soil surface, and secondary effects such as alteration of soil pH as a result of ash deposition, exposure of the soil surface to solar radiation, and increased availability of nutrients. Several of the secondary effects are most dramatic immediately after a fire, but become progressively modulated by newly stimulated vegetation growth. The findings suggest that the effects of fire depend upon a wetland's characteristics, including its climatic and hydrological context, as well as upon interactions with other disturbances such as grazing. Thus, similar fire regimes may have dramatically different outcomes. Where knowledge gaps were identified, some general predictions are offered, drawing from comparable ecosystems such as mesic grasslands. These predictions provide potential hypotheses for further research.  相似文献   

13.
Climate change is expected to result in substantial ecological impacts across the globe. These impacts are uncertain but there is strong consensus that they will almost certainly affect fire regimes and vegetation. In this study, we evaluated how climate change may influence fire frequency, fire severity, and broad classes of vegetation in mountainous ecoregions of the contiguous western US for early, middle, and late 21st century (2025, 2055, and 2085, respectively). To do so, we employed the concept of a climate analog, whereby specific locations with the best climatic match between one time period and a different time period are identified. For each location (i.e. 1‐km2 pixel), we evaluated potential changes by comparing the reference period fire regime and vegetation to that of the fire regime and vegetation of the nearest pixels representative of its future climate. For the mountainous regions we investigated, we found no universal increase or decrease in fire frequency or severity. Instead, potential changes depend on the bioclimatic domain. Specifically, wet and cold regions (i.e. mesic and cold forest) generally exhibited increased fire frequency but decreased fire severity, whereas drier, moisture‐limited regions (i.e. shrubland/grassland) displayed the opposite trend. Results also indicate the potential for substantial changes in the amount and distribution of some vegetation types, highlighting important interactions and feedbacks among climate, fire, and vegetation. Our findings also shed light on a potential threshold or tipping point at intermediate moisture conditions that suggest shifts in vegetation from forest to shrubland/grassland are possible as the climate becomes warmer and drier. However, our study assumes that fire and vegetation are in a state of equilibrium with climate, and, consequently, natural and human‐induced disequilibrium dynamics should be considered when interpreting our findings.  相似文献   

14.
Tree establishment in grazed vegetation mosaics involves a series of early bottlenecks, including seed dispersal, germination, seedling emergence, survival and growth. In a field experiment, we studied seedling emergence of two species with contrasting recruitment strategies, Fraxinus excelsior and Quercus robur, in five structurally different vegetations: grazed and ungrazed grassland, ruderal pioneer vegetation, soft rush tussocks, tall sedge mats and bramble scrub. In a simulation experiment, we studied the interaction effects of pre-emergence flooding (3 weeks of inundation), trampling and grazing (simulated by clipping) of grassland vegetation on the emergence and early growth of both tree species in grass swards. Seedling emergence was enhanced in low swards and sparse vegetation types. Despite different recruitment strategies, the interaction of flooding and trampling of swards enhanced seedling emergence of both species. Grazing of soft rush and tall sedges enhanced emergence of F. excelsior. Clipping grass swards increased early growth of emerging Q. robur. Our results support the hypothesis that natural disturbances of soil and vegetation create microsites for seedling emergence and reduce above-ground competition. In grazed systems however, these results suggest a discordant relationship between successful seedling emergence and subsequent seedling growth/survival during the establishment process in structurally different vegetations.  相似文献   

15.
Question: Is post‐fire, medium‐term vegetation dynamics determined by land‐use or fire history prior to fire? Location: South‐facing slope in the Gallinera valley, Alicante province, eastern Spain. Methods: After mapping the land‐use and fire history of the study site using photo‐interpretation, we sampled vegetation structure on a set of plots representing the most frequent land‐use and fire history combinations on an area burned six years before sampling. We studied the effects of land‐use history, comparing the one‐fire land‐use trajectories. We analysed the effects of fire history; comparing one‐ and two‐fire plots for both previously cropped and uncropped areas. Results: Most variables were not significantly different between the earliest abandoned plots (abandoned at least 38 years before the fire) and the uncropped plots. On the most recently abandoned plots (abandoned between one and four years before the fire), the therophyte richness and the ratio of seeder: resprouter richness were significantly greatest. Different fire recurrences did not determine different post‐fire vegetation on either the uncropped or the early abandoned plots (all dominated by fire‐recruited seeder shrubs). The most recently abandoned plots had a lower resilience to fire. Conclusions: Land‐use history and recent pre‐fire land use, in particular, determined the post‐fire vegetation in the medium term. The vegetation composition converged during secondary succession among land‐use histories. Increasing fire recurrence had a small effect on mature plant communities, due to the combination of life‐history traits determining the response to fire of the dominant species.  相似文献   

16.
17.
Predator effects on herbivore and plant stability   总被引:2,自引:1,他引:2  
Humans are rapidly altering the diversity and composition of ecological communities by accelerating rates of species extinctions and introductions. These changes in diversity are not random and disproportionately involve the addition or extinction of predators. Theoretical and microcosm studies suggest predator removal may either increase or decrease ecosystem stability. Here we test whether the addition or removal of predators affects aggregate biomass stability in 40 experiments carried out in six different ecosystems. Predators did not alter the temporal variability of autotroph biomass, but significantly destabilized herbivore biomass. The effects of predators on herbivore biomass stability varied significantly among ecosystems, with benthic and pelagic lake systems showing the greatest shifts. Consequently, the addition of predators to communities, as occurs in many conservation efforts, biological control programmes and species introductions, may lead to more variable system dynamics.  相似文献   

18.
Recent models suggest that herbivores optimize nutrient intake by selecting patches of low to intermediate vegetation biomass. We assessed the application of this hypothesis to plains bison (Bison bison) in an experimental grassland managed with fire by estimating daily rates of nutrient intake in relation to grass biomass and by measuring patch selection in experimental watersheds in which grass biomass was manipulated by prescribed burning. Digestible crude protein content of grass declined linearly with increasing biomass, and the mean digestible protein content relative to grass biomass was greater in burned watersheds than watersheds not burned that spring (intercept; F1,251 = 50.57, P < 0.0001). Linking these values to published functional response parameters, ad libitum protein intake, and protein expenditure parameters, Fryxell's (Am. Nat., 1991, 138 , 478) model predicted that the daily rate of protein intake should be highest when bison feed in grasslands with 400–600 kg/ha. In burned grassland sites, where bison spend most of their time, availability of grass biomass ranged between 40 and 3650 kg/ha, bison selected foraging areas of roughly 690 kg/ha, close to the value for protein intake maximization predicted by the model. The seasonal net protein intake predicted for large grazers in this study suggest feeding in burned grassland can be more beneficial for nutrient uptake relative to unburned grassland as long as grass regrowth is possible. Foraging site selection for grass patches of low to intermediate biomass help explain patterns of uniform space use reported previously for large grazers in fire‐prone systems.  相似文献   

19.
It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion.  相似文献   

20.
Interspecific hybridization in plants is known to have ecological effects on associated organisms. We examined the differences in insect herbivore community structure and grazing pressure on tree canopy leaves among natural hybrids and their parental oak species. We measured leaf traits, herbivore community structure, and grazing pressure on leaves of two oak species, Quercus crispula and Q. dentata, and their hybrids. The concentration of nitrogen in canopy leaves was greater in hybrids and in Q. dentata than in Q. crispula. The concentration of total phenolics was lower in hybrids than in Q. crispula. The concentration of condensed tannin was greater in hybrids than in Q. crispula. Relative herbivore abundance and species richness were greater on oak hybrids than on either parental species; herbivore species diversity and composition on hybrids were close to those on Q. crispula. Herbivore grazing pressure was lower on hybrids and Q. dentata than on Q. crispula. There was a negative correlation between herbivore grazing pressure and leaf nitrogen, suggesting that interspecific variation among oak taxa in herbivore pressure may be explained by leaf nitrogen; variation in herbivore community structure among oak taxa is likely to be controlled by polygenic leaf traits. Differing responses of (1) herbivore community structure and (2) herbivore grazing pressure to host plant hybridization may play important roles in regulating herbivore biodiversity in cool‐temperate forest canopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号