首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
Changes in pigments contents, leaf area, leaf dry mass per unit area (LMA), photosynthetic rate and chlorophyll a fluorescence were investigated in developing leaves of Fagopyrum dibotrys Hara. mutant. Anthocyanins transiently accumulate below the upper epidermis during leaf ontogeny of this mutant. Red leaves possessed lower Chl content, LMA, photosynthetic rate and apparent carboxylation efficiency than green leaves. However, content of anthocyanins declined and above mentioned parameters increased during further leaf development. In both red and green leaves, chronic photoinhibition did not take place according to variable to maximum chlorophyll fluorescence ratio (Fv/Fm). Red leaves had higher non-photochemical quenching (NPQ) and higher PS 2 efficiency.  相似文献   

2.
Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (JO) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. ExceptSchima superba, an upper canopy tree species, the tree speciesCastanopsis fissa and two understory shrubsPsychotria rubra, Ardisia quinquegona had the highestP n at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio ofJ O/JF were elevated in leaves under full sunlight.J O/JF ratio reached 0.5–0.6 and coincided with the increasing of oxygenation rate of Rubisco (VO), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high temperature conditions.  相似文献   

3.
Cell proliferation, elongation, determination and differentiation mainly take place in the basal 5 mm of a barley leaf, the so-called basiplast. A considerable portion of cDNAs randomly selected from a basiplast cDNA library represented photosynthetic genes such as CP29, RUBISCO-SSU and type I-LHCP II. Therefore, we became interested in the role of the basiplast in establishing photosynthesis. (1) Northern blot analysis revealed expression of photosynthetic genes in the basiplast, although at a low level. Analysis of basiplasts at different developmental stages of the leaves revealed maximal expression of photosynthetic genes during early leaf development. The activity of these genes shows that plastid differentiation involves the development of the photosynthetic apparatus even at this early state of leaf cell expansion. (2) This conclusion was supported by the fact that chlorophylls and carotenoids are synthesized in the basiplast. The qualitative pattern of pigment composition was largely similar to that of fully differentiated green leaves. (3) The transition from proplastids to chloroplasts progressed in the basal 5 mm of the leaf, so that the number of grana lamellae per thylakoid stack increased with distance from the meristem from zero to about five. (4) Photosynthetic function was studied by chlorophyll a-fluorescence measurements. In dark-adapted 8-day-old primary leaves, the fluorescence ratio (FP-Fo)/FP was little decreased in basiplasts as compared to leaf blades. During steady state photosynthesis, the ratio (FM-Fo)/FM was high in leaf blade (0.5), but low in the sheath (0.25) and in the basiplast (0.18), indicating the existence of functional, albeit low light-adapted chloroplasts in the basiplast. (5) Further on, chlorophyll a fluorescence analysis in relation to seedling age revealed efficient photosynthetic performance in the basiplast of 3- to 6-day-old seedlings which later-on differentiates into leaf blade as compared to the basiplast of 7- to 12-day-old seedlings which develops into leaf sheath and finally ceases to grow. The leaf age dependent changes in basiplast photosynthesis were reflected by changes in pigment contents and LHCP II expression both of which also revealed a maximum in the basiplast of 4-day-old seedlings.Abbreviations bas 1 basiplast-associated gene 1 encoding a peroxide reductase - cab chlorophyll a/b binding protein - CP 29 29 kDa chlorophyll binding protein - DIG digoxigenin - EMIP epidermal major intrinsic protein - LHCP II light harvesting complex of Photosystem II - LSU large subunit of Rubisco - NPQ non photochemical chlorophyll a fluorescence quenching - PSI/PS II Photosystem I/II - PQ photochemical chlorophyll a fluorescence quenching - Rubisco Ribulose-1,5-bisphosphate carboxylase - SSU small subunit of Rubisco  相似文献   

4.
The present study was undertaken to test for the hypothesis that the rate of development in the capacity for photosynthetic electron transport per unit area (Jmax;A), and maximum carboxylase activity of Rubisco (Vcmax;A) is proportional to average integrated daily quantum flux density (Qint) in a mixed deciduous forest dominated by the shade‐intolerant species Populus tremula L., and the shade‐tolerant species Tilia cordata Mill. We distinguished between the age‐dependent changes in net assimilation rates due to modifications in leaf dry mass per unit area (MA), foliar nitrogen content per unit dry mass (NM), and fractional partitioning of foliar nitrogen in the proteins of photosynthetic electron transport (FB), Rubisco (FR) and in light‐harvesting chlorophyll‐protein complexes (Vcmax;AMANMFR; Jmax;AMANMFB). In both species, increases in Jmax;A and Vcmax;A during leaf development were primarily determined by nitrogen allocation to growing leaves, increases in leaf nitrogen partitioning in photosynthetic machinery, and increases in MA. Canopy differences in the rate of development of leaf photosynthetic capacity were mainly controlled by the rate of change in MA. There was only small within‐canopy variation in the initial rate of biomass accumulation per unit Qint (slope of MA versus leaf age relationship per unit Qint), suggesting that canopy differences in the rate of development of Jmax;A and Vcmax;A are directly proportional to Qint. Nevertheless, MA, nitrogen, Jmax;A and Vcmax;A of mature leaves were not proportional to Qint because of a finite MA in leaves immediately after bud‐burst (light‐independent component of MA). MA, leaf chlorophyll contents and chlorophyll : N ratio of mature leaves were best correlated with the integrated average quantum flux density during leaf development, suggesting that foliar photosynthetic apparatus, once developed, is not affected by day‐to‐day fluctuations in Qint. However, for the upper canopy leaves of P. tremula and for the entire canopy of T. cordata, there was a continuous decline in N contents per unit dry mass in mature non‐senescent leaves on the order of 15–20% for a change of leaf age from 40 to 120 d, possibly manifesting nitrogen reallocation to bud formation. The decline in N contents led to similar decreases in leaf photosynthetic capacity and foliar chlorophyll contents. These data demonstrate that light‐dependent variation in the rate of developmental changes in MA determines canopy differences in photosynthetic capacity, whereas foliar photosynthetic apparatus is essentially constant in fully developed leaves.  相似文献   

5.
We investigated an effect of canopy position and a number of days after rainfall on reduction of photosynthetic rate in a Fagus crenata forest in summer 2008, during days when midday depression was not apparent. We compared in situ photosynthetic rate and photosynthetic rate that was calculated by photosynthetic light response curves measured in the morning. The ratio, in situ photosynthesis divided by the curve-estimated value, declined towards the end of each day for the upper leaves, but not for the lower leaves. Total photosynthesis was reduced only for the upper leaves by 12% during 5 days after the rainfall.  相似文献   

6.
冠层高度对毛竹叶片光合生理特性的影响   总被引:2,自引:0,他引:2  
借助LI-6400便携式光合作用系统,研究了冠层高度对不同林龄毛竹(Phyllostachys pubescens)叶片光合生理特性和水分利用效率(WUE)的季节性影响,为促进毛竹林碳汇能力和生产力提升的林分结构调整等可持续栽培技术提供理论依据。结果表明:(1)出笋期,不同竹龄毛竹叶片净光合速率(Pn)和蒸腾速率(Tr)的日均值呈现出冠层上部小于冠层下部的梯度变化趋势,且2a生毛竹不同冠层Pn日均值大于3a生毛竹;孕笋行鞭期,不同林龄毛竹各时间点Pn值和日均值、以及2年生毛竹各时间点的Tr值均为冠层上部大于冠层下部。各生长季节,不同林龄毛竹个体叶片的气孔导度(Gs)均与Tr的变化趋势一致。(2)2年生毛竹各季节仅冠层上部叶片会出现"光合午休",而3年生毛竹仅于出笋期时各冠层叶片出现"光合午休"现象。(3)出笋期毛竹叶片WUE日均值随着冠层高度增加而增加,这种变化趋势不受竹龄影响;而孕笋行鞭期,仅2年生毛竹叶片WUE日均值随着冠层高度增加而下降。不同冠层高度的孕笋行鞭期毛竹叶片WUE日均值都显著高于出笋期;冠层高度对毛竹叶片气体交换特性和WUE的影响受生长发育关键期的季节因素影响,且毛竹叶片WUE与Gs之间存在负相关关系,其不受毛竹个体年龄和叶片冠层高度影响。(4)不同生长季节各冠层叶绿素a/b值均随着冠层高度下降而降低,不同林龄毛竹叶片叶绿素含量基本随着冠层自上而下呈逐渐增加的趋势。各生长季节,不同林龄个体叶片氮素含量、比叶重随冠层高度垂直变化趋势与叶片Pn日均值的垂直变化趋势一致。研究认为,毛竹不同冠层部位叶片通过改变形态、氮素含量来适应不同生长季节生长环境的变化,以便充分利用光能提高光合能力。  相似文献   

7.
In this work, the effect of sucrose on photosynthetic activity during in vitro culture was studied. Experiments were carried out using uniform somatic embryo-derived germlings of Gentiana kurroo (Royle) confirmed by chromosome counting and flow cytometry technique. Photosynthetic activity was measured by chlorophyll a fluorescence and gas exchange method. The efficiency of photosynthetic apparatus as measured by the ratio F v/F m, Yield and qP (light phase of photosynthesis) was the highest when the medium was supplemented with 0.3% sucrose which well corresponded with plant gas exchange. Taking all data into consideration for the best development of photosynthetic apparatus and the most efficient of net photosynthesis of studied germlings would be medium supplemented with 0.2–0.4% of sucrose.  相似文献   

8.
9.
A comparison of the effects of a rapidly imposed water deficit with different leaf ages on chlorophyll a fluorescence and gas exchange was performed in maize (Zea mays L.) plants. The relationships between photosynthesis and leaf relative turgidity (RT) and ion leakage were further investigated. Leaf dehydration substantially decreased net photosynthetic rate (A) and stomatal conductance (G s), particularly for older leaves. With dehydration time, F v /F m maintained a relatively stable level for youngest leaves but significantly decreased for the older leaves. The electron transport rate (ETR) sharply decreased with intensifying dehydration and remained at lower levels during continuous dehydration. The photochemical quenching of variable chlorophyll fluorescence (q P) gradually decreased with dehydration intensity for the older leaves but increased for the youngest leaves, whereas dehydration did not affect the nonphotochemical chlorophyll fluorescence quenching (NPQ) for the youngest leaves but remarkably decreased it for the older leaves. The leaf RT was significantly and positively correlated with its F v /F m, ETR, and q P, and the leaf ion leakage was significantly and negatively correlated with F v /F m and NPQ. Our results suggest that the photosynthetic systems of young and old leaves decline at different rates when exposed to rapid dehydration.  相似文献   

10.
In order to evaluate the salinity tolerance of Hibiscus hamabo Siebold & Zuccarini (Malvaceae), a candidate halophyte for reclamation areas, we analyze the effects of NaCl concentration, ranging from 0 to 500?mM, on the morphological, photosynthetic and chlorophyll fluorescent traits of this species. The optimal concentration for the germination of H. hamabo was 25?mM NaCl, and the optimal concentration for the survival and growth of H. hamabo ranged from 5 to 10?mM NaCl. Growth traits of H. hamabo at 25?mM, including the plant height, canopy diameter, number of leaves and width of the largest leaf, showed no statistical differences from the control. Net photosynthetic rate, stomatal conduction, light utilization efficiency, water utilization efficiency, maximal photosynthetic rate, light saturation point and chlorophyll content were the highest at 7.5?mM NaCl. F v/F m and F v/F 0 at 5 and 7.5?mM were significantly higher than the others, while F 0 was significantly lower. F m and F v at NaCl concentrations ranging from 2.5 to 10?mM were significantly higher than the others. Pearson correlation analysis showed that the chlorophyll content, maximal photosynthetic rate and light saturation point were significantly positively correlated with the number of leaves, while F 0 was significantly negatively correlated with the width of the largest leaf. Light compensation point was significantly negatively correlated with plant height, leaf number, width of the largest leaf and canopy diameter, and might be a good indicator for the salt tolerance of H. hamabo.  相似文献   

11.
Dry cork layer (phellem) in stems of Populus tremula transmitted 35–55 percent of incident irradiation, depending upon moisture content. A cover of crustose Lecanora lichens reduced transmission through phellem to 10 percent or less of incident irradiation. The bark contains photosynthetically active cells. Apparent quantum yield for photosynthetic O2-evolution was 0.017 in bark covered with dry Lecanora compared with 0.070 in naked bark. The capacity for gross photosynthesis in high light (1090 μmol photons m?2 s?1) was reduced by 50 percent in Lecanora-covered bark. Lecanora did not reduce the ratio between variable and maximal chlorophyll a fluorescence (Fv/Fm). Chlorophyll content per unit area was similar in leaves and naked bark of Populus tremula. The chlorophyll content in the bark decreased with increasing chlorophyll content in Lecanora. Chlorophyll a/b ratio was 2.5 in the bark compared with 4.0 in leaves and in Lecanora, and the ratio decreased down the stems. The a/b ratio was 2.3 in Lecanora covered bark compared with 2.6 in naked bark. The changes in bark photosynthesis below a Lecanora crust were probably due to acclimation of bark photosynthesis to shade, since the lichen acids in the measured lichens neither suppressed photosynthetic O2-evolution nor changed the Fv/Fm in bark disks.  相似文献   

12.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSII) (FJF,, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in FJ/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover, trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHClI) from PSII reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

13.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2001,39(4):529-537
In canopy shade leaves of grapevine (Vitis vinifera L. cv. Moscato giallo) grown in the field the contents of chlorophyll (Chl), carotenoids (Car), and soluble protein per fresh mass were lower than in sun leaves. RuBPC activity, in vivo nitrate reductase activity (indicator of nitrate utilisation), apparent electron transport rate, and photochemical fluorescence quenching were also significantly reduced in canopy shade leaves. When various photosynthetic activities were followed in isolated thylakoids, canopy shade leaves exerted a marked inhibition of whole chain and photosystem (PS) 2 activity. Smaller inhibition of PS1 activity was observed even in high-level canopy shade (HS) leaves. The artificial exogenous electron donors, DPC and NH2OH, significantly restored the loss of PS2 activity in HS leaves. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PS2 activity in canopy shade leaves was due to the loss of 47, 43, 33, 28–25, 23, 17, and 10 kDa polypeptides.  相似文献   

14.
The growth, photosynthesis, and respiration of the marine diatom Phaeodactylum tricornutum were examined under photoautotrophic and mixotrophic conditions. 100 mM glycerol, acetate, and glucose significantly increased specific growth rate, and mixotrophic growth achieved higher biomass concentrations. Under mixotrophic conditions, respiration rate (R d) and light compensation irradiance (I c) were significantly higher, but net maximum photosynthetic O2 evolution rate (P m) and saturation irradiance (I k) were depressed. Organic carbon sources decreased the cell photosynthetic pigment content and chlorophyll a to c ratio, but with a higher carotenoid to chlorophyll a ratio. Ratios of variable to maximum chlorophyll fluorescence (F v/F m) and 77 K fluorescence spectra of mixotrophic cells indicated a reduced photochemical efficiency of photosystem II. The results were accompanied by lower electron transport rate. Therefore, organic carbon sources reduced the photosynthesis efficiency, and the enhancement of biomass of P. tricornutum implied that organic carbon sources had more pronounced effects on respiration than on photosynthesis.  相似文献   

15.
Light availability varies strongly among moss habitats and within the moss canopy, and vertical variation in light within the canopy further interacts with the age gradient. The interacting controls by habitat and canopy light gradient and senescence have not been studied extensively. We measured light profiles, chlorophyll (Chl), carotenoid (Car) and nitrogen (N) concentrations, and photosynthetic electron transport capacity (Jmax) along habitat and canopy light gradients in the widespread, temperate moss Pleurozium schreberi to separate sources of variation in moss chemical and physiological traits. We hypothesised that this species, like typical feather mosses with both apical and lateral growth, exhibits greater plasticity in the canopy than between habitats due to deeper within‐canopy light gradients. For the among‐habitat light gradient, Chl, Chl/N and Chl/Car ratio increased with decreasing light availability, indicating enhanced light harvesting in lower light and higher capacity for photoprotection in higher light. N and Jmax were independent of habitat light availability. Within the upper canopy, until 50–60% above‐canopy light, changes in moss chemistry and photosynthetic characteristics were analogous to patterns observed for the between‐habitat light gradient. In contrast, deeper canopy layers reflected senescence of moss shoots, with pigment and nitrogen concentrations and photosynthetic capacity decreasing with light availability. Thus, variation in chemical and physiological traits within the moss canopy is a balance between acclimation and senescence. This study demonstrates extensive light‐dependent variation in moss photosynthetic traits, but also that between‐habitat and within‐canopy light gradient affects moss physiology and chemistry differently.  相似文献   

16.
The present study investigated the interaction of growth irradiance (Qint) with leaf capacity for and kinetics of adjustment of the pool size of xanthophyll cycle carotenoids (sum of violaxanthin, antheraxanthin and zeaxanthin; VAZ) and photosynthetic electron transport rate (Jmax) after changes in leaf light environment. Individual leaves of lower‐canopy/lower photosynthetic capacity species Tilia cordata Mill. and upper canopy/higher photosynthetic capacity species Populus tremula L. were either illuminated by additional light of 500–800 µmol m?2 s?1 for 12 h photoperiod or enclosed in shade bags. The extra irradiance increased the total amount of light intercepted by two‐fold for the upper and 10–15‐fold for the lower canopy leaves, whereas the shade bags transmitted 45% of incident irradiance. In control leaves, VAZ/area, VAZ/Chl and Jmax were positively associated with leaf growth irradiance (Qint). After 11 d extra illumination, VAZ/Chl increased in all cases due to a strong reduction in foliar chlorophyll, but VAZ/area increased in the upper canopy leaves of both species, and remained constant or decreased in the lower canopy leaves of T. cordata. The slope for VAZ/area changes with cumulative extra irradiance was positively associated with Qint only in T. cordata, but not in P. tremula. Nevertheless, all leaves of P. tremula increased VAZ/area more than the most responsive leaves of T. cordata. Shading reduced VAZ content only in P. tremula, but not in T. cordata, again demonstrating that P. tremula is a more responsive species. Compatible with the hypothesis of the role of VAZ in photoprotection, the rates of photosynthetic electron transport declined less in P. tremula than in T. cordata after the extra irradiance treatment. However, foliar chlorophyll contents of the exposed leaves declined significantly more in the upper canopy of P. tremula, which is not consistent with the suggestion that the leaves with the highest VAZ content are more resistant to photoinhibition. This study demonstrates that previous leaf light environment may significantly affect the adaptation capacity of foliage to altered light environment, and also that species differences in photosynthetic capacity and acclimation potentials importantly alter this interaction.  相似文献   

17.
Summary Gas exchange and chlorophyll fluorescence techniques were used to evaluate the hypothesis that leaf movement in Vitis californica Benth. (California wild grape) allows a compromise between sunlight interception and stress damage in order to maximize photosynthetic carbon gain over the life of the leaf. Leaves that were restrained horizontally tolerated their increased radiation loads if critical temperatures were not exceeded. Reductions in photosynthetic capacity and the F V/F M fluorescence ratio only occurred in leaves that attained high temperatures. Leaf orientation and canopy position were important determinants of leaf temperature. These results indicate that excessive leaf temperature, not high PFD, can be a principle cause of reduced carbon gain and senescence in this species in the wild. Leaf movement appears to protect photosynthetic components in midsummer.  相似文献   

18.
Photosynthetic pigments, gas exchange, chlorophyll (Chl) a fluorescence kinetics, antioxidant enzymes and chloroplast ultrastructure were investigated in ginkgo (Ginkgo biloba L.) leaves from emergence to full size. Under natural conditions, the net photosynthetic rate (PN), contents of Chl a, Chl b and total soluble proteins and fresh and dry leaf mass gradually increased during leaf expansion. The maximum photochemical efficiency of photosystem (PS) 2 (variable to maximum fluorescence ratio, Fv/Fm) was considerably higher at the early stages of leaf development than in fully expanded leaves. During daily course, only reversible decrease in Fv/Fm was distinguished at various stages, implying that no photo-damage occurred. Absorption flux per cross section (CS) and trapped energy flux per CS were significantly lower in newly expanding leaves compared with fully expanded ones, however, dissipated energy flux per CS was only slightly lower in expanding leaves. The ratio of carotenoids (Car)/Chl decreased gradually during leaf expansion due to increasing Chl content. Moreover, activities of the antioxidant enzymes, such as superoxide dismutase, ascorbate peroxidase, catalase and peroxidase, increased at the early stages of leaf expansion. The appearance of osmiophilic granules in fully expanded leaves further proves that photo-protection is significantly strengthened at the early stages of leaf expansion.  相似文献   

19.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

20.
为评价日本荚蒾(Viburnum japonicum)的耐盐雾能力,对4 a生实生苗用不同盐雾浓度处理(盐雾NaCl质量浓度分别为0%、1%、2%、3%),测定叶片净光合速率、最大光化学效率(Fv/Fm)和叶绿素含量(Chl)等指标的变化。结果表明,1%盐雾处理的日本荚蒾植株能够存活,但生长不良,大于2%的盐雾处理的植株全部死亡。随着浓度的升高,日本荚蒾叶片的最大光合速率、Fv/Fm及Chl含量下降,而光饱和点及光补偿点总体呈上升趋势。这说明盐雾胁迫通过伤害光系统Ⅱ反应中心、改变植物可利用光能范围及降低叶绿素含量影响植物的光合作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号