首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Sex-biased dispersal is a common phenomenon in birds and mammals. Competition for mates has been argued to be an important selective pressure favouring dispersal. Sexual differences in the level of intrasexual competition may produce asymmetries in the costs-benefits balance of dispersal and philopatry for males and females, which may favour male-biased dispersal in polygynous species such as most mammals. This being the case, condition-dependent dispersal predicts that male-bias should decrease if mating competition relaxes. We test this expectation for red deer, where male-biased dispersal is the norm. In southwestern Spain, red deer populations located in nonfenced hunting estates presented altered structures with sex ratio strongly biased to females and high proportion of young males. As a consequence, mate competition in these populations was lower than in other, most typical red deer populations. We found that, under such conditions of altered population structure, dispersal was female-biased rather than male-biased. Additionally, mate competition positively related to male dispersal but negatively to female dispersal. Other factors such as resource competition, age of individuals and sex ratio were not related to male or female dispersal. Males may not disperse if intrasexual competition is low and then females may disperse as a response to male philopatry. We propose hypotheses related to female mate choice to explain female dispersal under male philopatry. The shift of the sex-biased dispersal pattern along the gradient of mate competition highlights its condition-dependence as well as the interaction between male and female dispersal in the evolution of sex-biased dispersal.  相似文献   

2.
1.?Habitat selection can affect individual fitness, and therefore, individuals are expected to assess habitat quality of potential breeding sites before settlement. 2.?We investigated the role of social environment on juvenile dispersal behaviour in the great tit (Parus major). Two main contradictory hypotheses can be formulated regarding social effects on juvenile dispersal as follows: (i) High fledgling density and sex ratio may enhance the intensity of local (kin) competition and, therefore, reduce individual survival chance, enhance emigration and reduce settlement ('repulsion' hypothesis) (ii) Alternatively, high fledgling density and sex ratio may signal high-quality habitat or lead to aggregation and thus increase individual survival chance, reduce emigration and enhance settlement ('attraction' hypothesis). 3.?To disentangle positive from negative effects of high density and male-biased sex ratio on dispersal, we manipulated the social composition of the fledgling population in 12 semi-isolated nest-box areas (plots) via a change of fledgling density (low/high) as well as fledgling sex ratio (female-biased/balanced/male-biased) across 3?years. We then tested whether experimental variation in male and female fledgling densities affected variation in local survival, emigration and settlement of juveniles, and whether social effects on survival and dispersal support the 'repulsion' or 'attraction' hypothesis. 4.?We found no experimental effects on local survival and emigration probabilities. However, consistent with the 'attraction' hypothesis, settlement was significantly and positively affected by local experimental sex ratio in each of the study years: both male and female juveniles avoided female-biased plots and settled more in plots that were balanced and male-biased the previous year. 5.?Our study provides unprecedented experimental evidence that local sex ratio plays a causal role in habitat selection. We suggest that settlers avoid female-biased plots because a high proportion of females may reflect the absence or the low quality of local resources in the habitat. Alternatively, male territory acquisition may be facilitated by a high local density of 'candidate' males, and therefore, juveniles were less successful in settling in female-biased plots.  相似文献   

3.
Changes in population size of local populations of birds have usually been interpreted in relation to adult return rate and recruitment of young individuals after natal dispersal. Little is known about the importance of redistribution of adult individuals through breeding dispersal. The small Norwegian population of ortolan buntings Emberiza hortulana has a patchy distribution with about 30 long‐term local populations. During a period of general population decline (29% decrease over 7 years), the population trends of local populations (measured as number of males recorded) were highly variable, with some even increasing four‐fold. Comparisons of demographic parameters showed that adult immigration rate (i.e. dispersal of adult males) explained both yearly changes in male population size and population trends over the whole study period better than adult return rate or adult emigration rate, or a measure of recruitment of young males. Adult immigration rates and recruitment rates were correlated, suggesting that both young and adult males find the same places attractive. In the study area, adult sex ratio was strongly male‐biased, and immigration rate was higher when local sex ratio was less skewed. In addition, less skewed sex ratio was related to higher adult return rate and lower emigration rate. We found no relationships between measures of breeding success and population change. We suggest that conspecific attraction may explain the observed patterns. Some local populations may act as hot‐spots attracting adult males from other populations. Thus, local population changes need not reflect overall population growth rate, but may be a consequence of redistribution of adult birds.  相似文献   

4.
In polygynous mammals, it is commonly observed that both sex ratios at birth and dispersal are male biased. This has been interpreted as resulting from low female dispersal causing high female local resource competition, which would select for male-biased sex ratios. However, a female-biased sex ratio can be selected despite lower female than male-biased dispersal. This will occur if the low female dispersal is close to the optimal dispersal rate, while the male dispersal is not close to the optimal dispersal rate. The actual outcome depends on the joint evolution of sex-biased dispersal and sex ratio. Earlier analyses of joint evolution imply that there will be no sex-ratio nor dispersal biases at the joint evolutionarily stable strategy, thus they do not explain the data. However, these earlier analyses assume no intersexual competition for resources. Here, we show that when males and females compete with each other for access to resources, male-biased dispersal will be associated with male-biased birth sex ratio, as is commonly observed. A trend toward male-biased birth sex ratios is also expected if there is intersexual local resource competition and if birth sex ratio is constrained so that it cannot depart from balanced sex ratio.  相似文献   

5.
Monogynous mating systems (low male mating rates) occur in various taxa and have evolved several times independently in spiders. Monogyny is associated with remarkable male mating strategies and predicted to evolve under a male-biased sex ratio. While male reproductive strategies are well documented and male mating rates are easy to quantify, especially in sexually cannibalistic species, female reproductive strategies, the optimal female mating rate, and the factors that affect the evolution of female mating rates are still unclear. In this study, we examined natural female mating rates and tested the assumption of a male-biased sex ratio and female polyandry in a natural population of Argiope bruennichi in which we controlled female mating status prior to observations. We predicted variation in female mating frequencies as a result of spatial and temporal heterogeneity in the distribution of mature females and males. Females had a low average mating rate of 1.3 and the majority copulated only once. Polyandry did not entirely result from a male-biased sex-ratio but closely matched the rate of male bigamy. Male activity and the probability of polyandry correlated with factors affecting pheromone presence such as virgin females' density. We conclude that a strong sex ratio bias and high female mating rates are not necessary components of monogynous mating systems as long as males protect their paternity effectively and certain frequencies of bigyny stabilise the mating system.  相似文献   

6.
Recent studies on the effect of local mate competition (LMC) on sex ratios have focused on the effect of post-dispersal mating success by males. A higher proportion of males is expected to be produced as the potential for outbreeding increases. Here we demonstrate that males of a haplodiploid ambrosia beetle with LMC disperse to seek additional matings, and brood sex ratios increase with outbreeding opportunities in the field. Manipulations in the laboratory confirm that females produce more sons when the post-dispersal mating prospects of their sons are experimentally increased. This is the first study showing that male dispersal options may influence individual female sex allocation decisions in species with strong LMC.  相似文献   

7.
The genetic structure of a group or population of organisms can profoundly influence the potential for inbreeding and, through this, can affect both dispersal strategies and mating systems. We used estimates of genetic relatedness as well as likelihood-based methods to reconstruct social group composition and examine sex biases in dispersal in a Costa Rican population of white-throated magpie-jays ( Calocitta formosa , Swainson 1827), one of the few birds suggested to have female-biased natal philopatry. We found that females within groups were more closely related than males, which is consistent with observational data indicating that males disperse upon maturity, whereas females tend to remain in their natal territories and act as helpers. In addition, males were generally unrelated to one another within groups, suggesting that males do not disperse with or towards relatives. Finally, within social groups, female helpers were less related to male than female breeders, suggesting greater male turnover within groups. This last result indicates that within the natal group, female offspring have more opportunities than males to mate with nonrelatives, which might help to explain the unusual pattern of female-biased philopatry and male-biased dispersal in this system. We suggest that the novel approach adopted here is likely to be particularly useful for short-term studies or those conducted on rare or difficult-to-observe species, as it allows one to establish general patterns of philopatry and genetic structure without the need for long-term monitoring of identifiable individuals.  相似文献   

8.
Many models of sex-biased dispersal predict that the direction of sex-bias depends upon a species' mating system. In agreement with this, almost all polygynous mammals show male-biased dispersal whereas largely monogamous birds show female-biased dispersal (FBD). The hamadryas baboon (Papio hamadryas hamadryas) is polygynous and so dispersal is predicted to be male biased, as is found in all other baboon subspecies, but there are conflicting field data showing both female and male dispersal. Using 19 autosomal genetic markers genotyped in baboons from four Saudi Arabian populations, we found strong evidence for FBD in post-dispersal adults but not, as expected, in pre-dispersal infants and young juveniles, when we compared male and female: population structure (F(st)), inbreeding (F(is)), relatedness (r), and the mean assignment index (mAIc). Furthermore, we found evidence for female-biased gene flow as population genetic structure (F(st)), was about four times higher for the paternally inherited Y, than for either autosomal markers or for maternally inherited mtDNA. These results contradict the direction of sex-bias predicted by the mating system and show that FBD has evolved recently from an ancestral state of male-biased dispersal. We suggest that the cost-benefit balance of dispersal to males and females is tightly linked to the unique hierarchical social structure of hamadryas baboons and that dispersal and social organization have coevolved.  相似文献   

9.
A field survey of plant and flower sex ratio and secondary sex characteristics was made in Silene alba. Female-biased plant sex ratios were found, as seems typical for the species. Sex ratio distribution correlated with a gradient of soil moisture (with the more moist area having a more female-biased ratio) and with changes in the density of Silene (intermediate and higher density areas having greater female bias). The floral sex ratio was significantly female-biased only at the site that was most female-biased in terms of plant sex ratio. Otherwise the population of flowers was significantly male-biased. Male and female plants harvested from the field differed in secondary sexual characteristics. Males had more flowers and invested proportionately more biomass in leaf, but less in root, stem and reproductive tissue than did females. Although both males and females were larger in terms of total dry weight at the moist site, males produced more flowers at the driest (high density) site. Here the female bias in plant sex ratio was intermediate, but the floral sex ratio was significantly male-biased. A glasshouse experiment was performed in which plants were grown at four densities. Density significantly influenced plant survivorship and the probability of flowering, and increased female bias in the pots, but it did not affect patterns of biomass allocation in flowering plants. Patterns of male and female biomass allocation did not differ in the experiment, except in terms of reproductive allocation (greater in females) and allocation to leaf, greater in males, but only at the lowest density. This work urges caution in interpreting differences between males and females in the field as secondary sex characteristics, since we find such properties to be overlapping under experimental conditions. It supports the idea that males and females of a species may sustain different reproductive output under differing conditions.  相似文献   

10.
The cost of reproduction is expected to influence survival or future reproduction. Most previous studies have assessed cost of reproduction in relation to natural and experimental variation in number of offspring produced. The ortolan bunting Emberiza hortulana is a passerine bird species with biparental care, and the Norwegian population of the species has an extraordinarily skewed sex ratio with only about half of the males attracting a female, and therefore provides a rare opportunity to compare survival of males that have paired and bred with that of non‐breeders (unpaired males), which have not paid a cost of reproduction. Results showed that survival rates of paired (65.0%) and unpaired (64.2%) males did not differ. However, when comparisons were restricted to paired males that definitely had nestlings, their survival rate (76.8%) was significantly higher than that of unpaired males, and the same was the case when comparisons were further restricted to paired males that had offspring recruiting to the population the next year (76.8% survived). Males breeding successfully are likely to be a biased subset of high quality males. In analyses of a subset of males that had bred successfully when young, there was no difference in survival of paired and unpaired individuals when these males were older. In conclusion, breeding male ortolan buntings did not appear to pay a cost of reproduction in terms of reduced survival to the next year compared to non‐breeding males. These results may be explained by non‐breeding males also incurring extra costs during the breeding season, and that costs of reproduction are not shared equally among sexes in the ortolan bunting and other bird species with biparental care.  相似文献   

11.
Natal dispersal is usually sex biased in birds and mammals.Female-biased natal dispersal is the prevailing pattern in birdsbut is rare among mammals. Hypotheses explaining sex bias indispersal include the mate-defense mating hypothesis, whichpredicts male-biased dispersal, the resource-defense hypothesispredicting female-biased dispersal, and the competition hypothesis,which predicts that if dispersal is caused by competition forresources between sexes, then the subdominant sex will disperse.We studied natal dispersal of Siberian flying squirrels Pteromysvolans using radio telemetry in Southern Finland in 1996–2004.Of 86 juveniles that survived over the dispersal period, almostall young females dispersed from the natal site, whereas almost40% of males were philopatric. Dispersal was farther for femalesthan males. Females began dispersal on average 2 weeks earlierthan males and were lighter in mass at the onset of dispersalthan later dispersing males. No mate- or resource-defense matingsystem could be found among males, but females seemed to defendnest and apparently food resources, in contrast to the expectationof dispersal bias in resource-defense systems. Competition forresources between sexes does not explain female bias either:in the flying squirrel, the female seems to be the dominantsex. We propose that young females are subordinate to theirmothers and have to disperse to find a vacant, suitable sitefor reproduction.  相似文献   

12.
The males of many fig wasps fight fatally for mating opportunities. The concentration of females in space has been proposed as one factor selecting for their aggressive behaviour. We studied the temporal distribution of receptive females to obtain a clearer impression of the operational sex ratio in figs. Females of nonpollinating species emerged from figs over a protracted period of time and this resulted in an extremely male-biased operational sex ratio, conducive to extreme fighting. Since there were so few receptive females at any one time, a male could defend an eclosing female. Consequently, the largest, Otitesella longicauda male in a fig had a much higher mating success than smaller males. This suggests that larger males have a larger fitness advantage than larger females and a Trivers-Willard effect could have important implications for sex allocation. Apterous and seemingly nondispersing males routinely left their figs. Such dispersal can affect both (1) sex allocation by reducing the degree of local mate competition between brothers and (2) male dimorphism by reducing the mating opportunities of males with a dispersing morphology. We show that the wingless digitata males of the Otitesella digitata species group disperse on to leaves close to their natal fig. An extremely male-biased sex ratio resulted in almost all O. longicauda females being mated. These findings suggest that the classical concept of the fig wasp mating system is too simplistic and that important assumptions of sex allocation models are violated. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

13.
The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females.  相似文献   

14.
Animal movements at large spatial scales are of great importance in population ecology, yet little is known due to practical problems following individuals across landscapes. We studied the whole Norwegian population of a small songbird (ortolan bunting, Emberiza hortulana ) occupying habitat patches dispersed over nearly 500 km2. Movements of colour-ringed males were monitored during ten years, and extensive long-distance dispersal was recorded. More than half of all cases of breeding dispersal took place within one breeding season, and males moved up to 43 km between singing territories, using 1–22 d. Natal dispersal was usually to a habitat patch close to the natal patch, or within the natal patch if it was large. Breeding dispersal movements were often long-distance, beyond neighbouring patches, and up to 11–19 patches were overflown. Movements of at least 6–9 km across areas of unsuitable habitat occurred regularly. The number of patches visited was low (1–4) even though search costs in terms of time spent moving from one site to another were relatively low (often only a few days even for distances >10 km). Most males seemed to use a threshold tactic when choosing a patch, but returns to previously visited patches were recorded, including some cases of commuting. In conclusion, male ortolan buntings have a surprising ability to move quickly at the landscape level, and this resulted in a high connectivity of patches. We discuss our results in relation to optimal searching strategies, in particular the use of within-breeding season versus post-breeding season search, conspecific attraction and adaptive late arrival of young birds.  相似文献   

15.
Ectoparasitic insects often exhibit female-biased sex ratios, a pattern usually explained by greater female longevity and the likelihood that smaller, more active males will disperse or be groomed off the host. Theory predicts that unbalanced sex ratios should favor males when resources are abundant and predictable, and when males are the dispersing sex. Sex ratios of streblid bat flies were evaluated based on a large biodiversity survey in Venezuela–more than 25,000 bats representing 130 species were searched for flies, yielding more than 36,500 bat flies of 116 species. These samples allowed us to analyze sex ratios in 112 bat fly metapopulations. Our results indicate that fully one-third of these metapopulations were significantly male-biased. Traditional explanations for sex-ratio bias, such as sampling effects, unequal longevity between the sexes, and differential dispersal capability are refuted for bat flies in favor of an alternative hypothesis—selective host grooming. Because host grooming is the principal cause of mortality for these slow-reproducing parasites, and because females are larger than males and gravid for a significant portion of their adult life, host grooming activity is more likely to kill or remove females than males. Incomplete understanding of population dynamics, such as mating behavior, dispersal, and reproductive success, cloud applications of male-biased sex ratios in bat flies to support or refute theoretical predictions. Population studies of mating competition and sex-related dispersal dynamics of this male-dominated group should yield important insights into sex ratio theory.  相似文献   

16.
Sex ratios of populations of the wheat midge Sitodiplosis mosellana Gehin, developing on wheat Triticum aestivum L., were determined at reproduction, adult emergence, and dispersal. The patterns of sex ratio through the life cycle of S. mosellana result from: (i) a genetic mechanism that causes all or nearly all of the progeny of individual females to be a single sex, with an overall sex ratio that is slightly biased at 54-57% females; (ii) a differential mortality during diapause that increases the sex ratio to 60-65% females; (iii) mating which occurs near the emergence site followed by female dispersal which causes the post-dispersal sex ratio to rise to nearly 100% females; and (iv) oviposition which spreads eggs among different plants and assures that the next generation has a local sex ratio close to the population average. These changes in sex ratio through the life cycle have implications for using crop resistance or pheromones to manage S. mosellana, because mating takes place quickly near emergence sites, and because mated females but not males disperse from emergence sites to oviposition sites. Crop refuges used to protect resistance genes against the evolution of virulence by S. mosellana must be interspersed to prevent assortative mating that would occur in separate blocks of resistant and susceptible plants. Monitoring or mating disruption using a pheromone would be ineffective when wheat is grown in rotation with a non-host crop.  相似文献   

17.
Sticky trap catch of pear psylla,Cacopsylla pyricola Foerster, is male biased during the reproductive generations, but not the diapausing generation. In cage studies, we monitored movement by male and female pear psylla between host plants, and tested whether reproductive and diapausing psylla exhibit similar rates of movement. We also experimentally varied sex ratio to determine whether sex ratio affected movement. Male-biased sex ratios prompted increased movement off of the original host by male psylla of the reproductive generations; no such effect was noted for diapausing insects. We interpret these results to indicate that male movements increased under male-biased conditions due to mate-searching activities. There was also evidence in two experiments that severely male-biased sex ratios prompted movement off of the original host plant by reproductive females; this effect may have been due to harassment of ovipositing females by males.  相似文献   

18.
In dioecious plants, differences in growth traits between sexes in a response to micro-environmental heterogeneity may affect sex ratio bias and spatial distributions. Here, we examined sex ratios, stem growth traits and spatial distribution patterns in the dioecious clonal shrub Aucuba japonica var. borealis, in stands with varying light intensities. We found that male stems were significantly more decumbent (lower height/length ratio) but female stems were upright (higher height/length ratio). Moreover, we found sex-different response in stem density (no. of stems per unit area) along a light intensity gradient; in males the stem density increased with increases in canopy openness, but not in females. The higher sensitivity of males in increasing stem density to light intensity correlated with male-biased sex ratio; fine-scale sex ratio was strongly male-biased as canopy openness increased. There were also differences between sexes in spatial distributions of stems. Spatial segregation of sexes and male patches occupying larger areas than female patches might result from vigorous growth of males under well-lit environments. In summary, females and males showed different growth responses to environmental variation, and this seemed to be one of possible causes for the sex-differential spatial distributions and locally biased sex ratios.  相似文献   

19.
《Animal behaviour》1988,36(6):1765-1769
Fighting between male natterjack toads, Bufo calamita, for access to females was studied in relation to both the influence of male and female density each night and the operational sex ratio. Fighting males were larger than other males and were present in the breeding area on more nights but their average mating success was the same. Fighting between males was associated with not strongly male-biased operational sex ratios. The density of breeding individuals, however, was irrelevant. Take-over rate was very low with an insignificant effect on mating success.  相似文献   

20.
Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号