首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Comparisons of genetic variation between humans and great apes are hampered by the fact that we still know little about the demographics and evolutionary history of the latter species. In addition, characterizing ape genetic variation is important because they are threatened with extinction, and knowledge about genetic differentiation among groups may guide conservation efforts. We sequenced multiple intergenic autosomal regions totaling 22,400 base pairs (bp) in ten individuals each from western, central, and eastern chimpanzee groups and in nine bonobos, and 16,000 bp in ten Bornean and six Sumatran orangutans. These regions are analyzed together with homologous information from three human populations and gorillas. We find that whereas orangutans have the highest diversity, western chimpanzees have the lowest, and that the demographic histories of most groups differ drastically. Special attention should therefore be paid to sampling strategies and the statistics chosen when comparing levels of variation within and among groups. Finally, we find that the extent of genetic differentiation among "subspecies" of chimpanzees and orangutans is comparable to that seen among human populations, calling the validity of the "subspecies" concept in apes into question.  相似文献   

2.
I derive the equilibrium values of sex-specific FST parameters, in an island model for a dioecious species with sex-biased dispersal and binomial distribution of family size before dispersal (as assumed in a Wright-Fisher population). I show that FST may take different values among males and among females whenever dispersal is a trait conditioned on gender. This has not always been recognized, because some models assumed that genes are sampled before dispersal. In particular, the ratios of sex-specific FST parameters evaluated after dispersal over FST evaluated before dispersal are simple functions of sex-specific dispersal rates. Therefore, a simple moment-based estimator of sex-specific dispersal rate is proposed. This method is based on the comparison of FST estimated before and after dispersal and assumes equilibrium between migration and drift. I evaluate this method through stochastic simulations for a range of sex-specific dispersal rates and sampling effort (sample size, number of loci scored).  相似文献   

3.
4.
Rocks and clocks: calibrating the Tree of Life using fossils and molecules   总被引:8,自引:0,他引:8  
A great tradition in macroevolution and systematics has been the ritual squabbling between palaeontologists and molecular biologists. But, because both sides were talking past each other, they could never agree. Practitioners in both fields should play to their strengths and work together: palaeontologists can provide minimum constraints on branching points in the Tree of Life with considerable precision, and estimate the extent of unrecorded prehistory. Molecular tree analysts have remarkable modelling tools in their armoury to convert multiple minimum age constraints into meaningful dated trees. As we discuss here, work should now focus on establishing reasonable, dated trees that satisfy rigorous assessment of the available fossils and careful consideration of molecular tree methods: rocks and clocks together are an unbeatable combination. Reliably dated trees provide, for the first time, the opportunity to explore wider questions in macroevolution.  相似文献   

5.
6.
The increasing use of electric lights has modified the natural light environment dramatically, posing novel challenges to both humans and wildlife. Indeed, several biomedical studies have linked artificial light at night to the disruption of circadian rhythms, with important consequences for human health, such as the increasing occurrence of metabolic syndromes, cancer and reduced immunity. In wild animals, light pollution is associated with changes in circadian behaviour, reproduction and predator–prey interactions, but we know little about the underlying physiological mechanisms and whether wild species suffer the same health problems as humans. In order to fill this gap, we advocate the need for integrating ecological studies in the field, with chronobiological approaches to identify and characterize pathways that may link temporal disruption caused by light at night and potential health and fitness consequences.  相似文献   

7.
Although there is a great deal of interest in the biological diversity of species and of genes, it is only recently that researchers have begun to investigate the processes that exert parallel influences on these different levels of diversity.  相似文献   

8.
Life history has been implicated as a determinant of variation in rate of molecular evolution amongst vertebrate species because of a negative correlation between body size and substitution rate for many molecular data sets. Both the generality and the cause of the negative body size trend have been debated, and the validity of key studies has been questioned (particularly concerning the failure to account for phylogenetic bias). In this study, a comparative method has been used to test for an association between a range of life-history variables-such as body size, age at maturity, and clutch size-and DNA substitution rate for three genes (NADH4, cytochrome b, and c-mos). A negative relationship between body size and rate of molecular evolution was found for phylogenetically independent pairs of reptile species spanning turtles, lizards, snakes, crocodile, and tuatara. Although this study was limited by the number of comparisons for which both sequence and life-history data were available, the results suggest that a negative body size trend in rate of molecular evolution may be a general feature of reptile molecular evolution, consistent with similar studies of mammals and birds. This observation has important implications for uncovering the mechanisms of molecular evolution and warns against assuming that related lineages will share the same substitution rate (a local molecular clock) in order to date evolutionary divergences from DNA sequences.  相似文献   

9.

Aim

We investigated the invasion history of Lycium ferocissimum, a spine-covered shrub native to South Africa that was introduced to Australia in the mid-1800s, and has since developed into a damaging invasive plant of undisturbed landscapes and pastures. In addition to identifying the provenance of the Australian plants, we tested for evidence of admixture, and contrasted genetic diversity and structuring across the native and introduced ranges.

Location

Samples were collected across South Africa (24 localities) and Australia (26 localities).

Methods

We used genotyping-by-sequencing (3117 SNPs across 381 individuals) to assess population genetic structuring in L. ferocissimum across Australia and South Africa. Coalescent analyses were used to explicitly test contrasting invasion scenarios.

Results

Clear geographic genetic structuring was detected across South Africa, with distinct clusters in the Eastern and Western Cape provinces. The L. ferocissimum plants in Australia form their own genetic cluster, with a similar level of genetic diversity as plants in South Africa. Coalescent analyses demonstrated that the lineage in Australia was formed by admixture between Eastern Cape and Western Cape plants, with most of the genetic material from the Australian lineage originating from the Western Cape. Our analyses suggest that L. ferocissimum plants were originally introduced to South Australia, though it is unclear whether admixture occurred before or after its introduction to Australia. We detected little evidence of geographic genetic structure across Australia, although many of the populations were genetically distinct from one another.

Main Conclusions

Our results illustrate how admixture can result in genetically diverse and distinct invasive populations. The complex invasion history of L. ferocissimum in Australia poses particular challenges for biological control. We suggest potential biological control agents should be screened against admixed plants (in addition to plants from the Eastern and Western Cape) to test whether they provide effective control of the genetically distinct invasive lineage.  相似文献   

10.
A recent molecular clock analysis concluded that Gondwanan vicariance and out-of-India dispersal best explained the distribution of Crypteroniaceae and its allies (Conti et al. 2002). A reanalysis of their data using a different molecular dating technique and calibration point is congruent with an alternative hypothesis, namely dispersal between India, Africa, and South America long after the initial break-up of Gondwana.  相似文献   

11.
Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus), widely regarded as a subspecies of the Kentish Plover (C. alexandrinus). Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind.  相似文献   

12.
Dispersal of planktonic larvae can create connections between geographically separated adult populations of benthic marine animals. How geographic context and life history traits affect these connections is largely unresolved. We use data from genetic studies (species level FST) of benthic teleost fishes combined with linear models to evaluate the importance of transitions between biogeographic regions, geographic distance, egg type (benthic or pelagic eggs), pelagic larval duration (PLD), and type of genetic marker as factors affecting differentiation within species. We find that transitions between biogeographic regions and egg type are significant and consistent contributors to population genetic structure, whereas PLD does not significantly explain population structure. Total study distance frequently contributes to significant interaction terms, particularly in association with genetic markers, whereby FST increases with study distance for studies employing mtDNA sequences, but allozyme and microsatellite studies show no increase in FST with study distance. These results highlight the importance of spatial context (biogeography and geographic distance) in affecting genetic differentiation and imply that there are inherent differences in dispersal ability associated with egg type. We also find that the geographic distance over which the maximum pairwise FST between populations occurs (relative to total study distance) is highly variable and can be observed at any scale. This result is consistent with stochastic processes inflating genetic differentiation and/or insufficient consideration of geographic and biological factors relevant to connectivity.  相似文献   

13.

Background  

Because bacteria do not have a robust fossil record, attempts to infer the timing of events in their evolutionary history requires comparisons of molecular sequences. This use of molecular clocks is based on the assumptions that substitution rates for homologous genes or sites are fairly constant through time and across taxa. Violation of these conditions can lead to erroneous inferences and result in estimates that are off by orders of magnitude. In this study, we examine the consistency of substitution rates among a set of conserved genes in diverse bacterial lineages, and address the questions regarding the validity of molecular dating.  相似文献   

14.
Recent investigations of anchialine caves and sinkholes have identified complex food webs dependent on detrital and, in some cases, chemosynthetically produced organic matter. Chemosynthetic microbes in anchialine systems obtain energy from reduced compounds produced during organic matter degradation (e.g., sulfide, ammonium, and methane), similar to what occurs in deep ocean cold seeps and mud volcanoes, but distinct from dominant processes operating at hydrothermal vents and sulfurous mineral caves where the primary energy source is mantle derived. This review includes case studies from both anchialine and non-anchialine habitats, where evidence for in situ chemosynthetic production of organic matter and its subsequent transfer to higher trophic level metazoans is documented. The energy sources and pathways identified are synthesized to develop conceptual models for elemental cycles and energy cascades that occur within oligotrophic and eutrophic anchialine caves. Strategies and techniques for testing the hypothesis of chemosynthesis as an active process in anchialine caves are also suggested.  相似文献   

15.
16.
Evolutionary diversifications are commonly attributed to thecontinued modifications of a conserved genetic toolkit of developmentalpathways, such that complexity and convergence in organismalforms are assumed to be due to similarity in genetic mechanismsor environmental conditions. This approach, however, confoundsthe causes of organismal development with the causes of organismaldifferences and, as such, has only limited utility for addressingthe cause of evolutionary change. Molecular mechanisms thatare closely involved in both developmental response to environmentalsignals and major evolutionary innovations and diversificationsare uniquely suited to bridge this gap by connecting explicitlythe causes of within-generation variation with the causes ofdivergence of taxa. Developmental pathways of bone formationand a common role for bone morphogenetic proteins (BMPs) inboth epigenetic bone remodeling and the evolution of major adaptivediversifications provide such opportunity. We show that variationin timing of ossification can result in similar phenotypic patternsthrough epigenetically induced changes in gene expression andpropose that both genetic accommodation of environmentally induceddevelopmental pathways and flexibility in development acrossenvironments evolve through heterochronic shifts in bone maturationrelative to exposure to unpredictable environments. We suggestthat such heterochronic shifts in ossification can not onlybuffer development under fluctuating environments while maintainingepigenetic sensitivity critical for normal skeletal formation,but also enable epigenetically induced gene expression to generatespecialized morphological adaptations. We review studies ofenvironmental sensitivity of BMP pathways and their regulationof formation, remodeling, and repair of cartilage and bone toexamine the hypothesis that BMP-mediated skeletal adaptationsare facilitated by evolved reactivity of BMPs to external signals.Surprisingly, no empirical study to date has identified themolecular mechanism behind developmental plasticity in skeletaltraits. We outline a conceptual framework for future studiesthat focus on mediation of phenotypic plasticity in skeletaldevelopment by the patterns of BMP expression.  相似文献   

17.
There is increasing evidence that species can evolve rapidly in response to environmental change. However, although land use is one of the key drivers of current environmental change, studies of its evolutionary consequences are still fairly scarce, in particular studies that examine land‐use effects across large numbers of populations, and discriminate between different aspects of land use. Here, we investigated genetic differentiation in relation to land use in the annual grass Bromus hordeaceus. A common garden study with offspring from 51 populations from three regions and a broad range of land‐use types and intensities showed that there was indeed systematic population differentiation of ecologically important plant traits in relation to land use, in particular due to increasing mowing and grazing intensities. We also found strong land‐use‐related genetic differentiation in plant phenology, where the onset of flowering consistently shifted away from the typical time of management. In addition, increased grazing intensity significantly increased the genetic variability within populations. Our study suggests that land use can cause considerable genetic differentiation among plant populations, and that the timing of land use may select for phenological escape strategies, particularly in monocarpic plant species.  相似文献   

18.
19.
20.
Both genetic and environmental factors underlie phenotypic variation. While research at the interface of evolutionary and developmental biology has made excellent advances in understanding the contribution of genes to morphology, less well understood is the manner in which environmental cues are incorporated during development to influence the phenotype. Also virtually unexplored is how evolutionary transitions between environmental and genetic control of trait variation are achieved. Here, I review investigations into molecular mechanisms underlying phenotypic plasticity in the aphid wing dimorphism system. Among aphids, some species alternate between environmentally sensitive (polyphenic) and genetic (polymorphic) control of wing morph determination in their life cycle. Therefore, a traditional molecular genetic approach into understanding the genetically controlled polymorphism may provide a unique avenue into not only understanding the molecular basis of polyphenic variation in this group, but also the opportunity to compare and contrast the mechanistic basis of environmental and genetic control of similar dimorphisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号