首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive species have had devastating impacts on the fauna and flora of the Hawaiian Islands. While the negative effects of some invasive species are obvious, other species are less visible, though no less important. Aphids (Homoptera: Aphididae) are not native to Hawai’i but have thoroughly invaded the Island chain, largely as a result of anthropogenic influences. As aphids cause both direct plant feeding damage and transmit numerous pathogenic viruses, it is important to document aphid distributions and ranges throughout the archipelago. On the basis of an extensive survey of aphid diversity on the five largest Hawaiian Islands (Hawai’i, Kaua’i, O’ahu, Maui, and Moloka’i), we provide the first evidence that invasive aphids feed not just on agricultural crops, but also on native Hawaiian plants. To date, aphids have been observed feeding and reproducing on 64 native Hawaiian plants (16 indigenous species and 48 endemic species) in 32 families. As the majority of these plants are endangered, invasive aphids may have profound impacts on the island flora. To help protect unique island ecosystems, we propose that border vigilance be enhanced to prevent the incursion of new aphids, and that biological control efforts be renewed to mitigate the impact of existing species.  相似文献   

2.
Trematolobelia (Campanulaceae: Lobeliodeae) is a genus of semelparous pliestesial pachycaul rosette treelets endemic to the Hawaiian Islands. Eight species are re-cognized. The most widespread is T. macrostachys, found in the Ko‘olau Mountains of O‘ahu and on Moloka‘i and Maui. The remainder are single-island endemics: T. auriculata (Lna‘i); T. grandiflora (Hawai‘i); T. kaalae, comb. et stat. nov. (Wai‘anae Mountains of O‘ahu); T. kauaiensis (Kaua‘i); T. rockii (Moloka‘i); T. singularis (Ko‘olau Mountains of O‘ahu); and T. wimmeri (Hawai‘i).  相似文献   

3.
Compared to the striking diversification and levels of endemism observed in many terrestrial groups within the Hawaiian Archipelago, marine invertebrates exhibit remarkably lower rates of endemism and diversification. Supralittoral invertebrates restricted to specific coastal patchy habitats, however, have the potential for high levels of allopatric diversification. This is the case of Ligia isopods endemic to the Hawaiian Archipelago, which most likely arose from a rocky supralittoral ancestor that colonized the archipelago via rafting, and diversified into rocky supralittoral and inland lineages. A previous study on populations of this isopod from Oʻahu and Kauaʻi revealed high levels of allopatric differentiation, and suggested inter-island historical dispersal events have been rare. To gain a better understanding on the diversity and evolution of this group, we expanded prior phylogeographic work by incorporating populations from unsampled main Hawaiian Islands (Maui, Molokaʻi, Lanaʻi, and Hawaiʻi), increasing the number of gene markers (four mitochondrial and two nuclear genes), and conducting Maximum likelihood and Bayesian phylogenetic analyses. Our study revealed new lineages and expanded the distribution range of several lineages. The phylogeographic patterns of Ligia in the study area are complex, with Hawaiʻi, Oʻahu, and the Maui-Nui islands sharing major lineages, implying multiple inter-island historical dispersal events. In contrast, the oldest and most geographically distant of the major islands (Kauaʻi) shares no lineages with the other islands. Our results did not support the monophyly of all the supralittoral lineages (currently grouped into L. hawaiensis), or the monophyly of the terrestrial lineages (currently grouped into L. perkinsi), implying more than one evolutionary transition between coastal and inland forms. Geometric-morphometric analyses of three supralittoral clades revealed significant body shape differences among them. A taxonomic revision of Hawaiian Ligia is warranted. Our results are relevant for the protection of biodiversity found in an environment subject to high pressure from disturbances.  相似文献   

4.
Globally, introductions of alien species are increasingly common, with invasive predators potentially having detrimental effects via predation on native species. However, native prey may avoid predation by adopting new behaviors. To determine whether invasive fish populations consume endemic shrimp in invaded Hawaiian anchialine habitats or if adopted patterns of diel migration prevents predation as previously hypothesized, a total of 183 invasive poeciliids (158 Gambusia affinis and 25 Poecilia reticulata) were collected for gut content analyses from four anchialine sites during wet and dry seasons on the islands of Hawai‘i and Maui. Predation on shrimp was not detected in habitats where they retreat exclusively into the underlying aquifer diurnally and only emerge nocturnally. However, low levels of predation were detected (7/65 fishes, only by Gambusia affinis) at Waianapanapa Cave, Maui, where shrimp retreat into both the aquifer and a cave during the day. Thus, adopted behavioral responses to invasive fishes generally, though not universally, prevent predation on endemic Hawaiian anchialine shrimps. However, non-consumptive effects resulting from behavioral modification of shrimps may have appreciable impacts on the Hawaiian anchialine ecosystem and warrant further study.  相似文献   

5.
Little is currently known regarding microbial community structure, and the environmental factors influencing it, within the anchialine ecosystem, defined as near-shore, land-locked water bodies with subsurface connections to the ocean and groundwater aquifer. The Hawaiian Archipelago is home to numerous anchialine habitats, with some on the islands of Maui and Hawaii harboring unique, laminated orange cyanobacterial–bacterial crusts that independently assembled in relatively young basalt fields. Here, benthic and water column bacterial and micro-eukaryotic communities from nine anchialine habitats on Oahu, Maui, and Hawaii were surveyed using high-throughput amplicon sequencing of the V6 (Bacteria-specific) and V9 (Eukarya-biased) hypervariable regions of the 16S- and 18S-rDNA genes, respectively. While benthic communities from habitats with cyanobacterial–bacterial crusts were more similar to each other than to ones lacking it on the same island, each habitat had distinct benthic and water column microbial communities. Analyses of the survey data in the context of environmental factors identified salinity, site, aquifer, and watershed as having the highest explanatory power for the observed variation in microbial diversity and community structure, with lesser drivers being annual rainfall, longitude, ammonium, and dissolved organic carbon. Our results epitomize the abiotic and biotic uniqueness characteristic of individual habitats comprising the Hawaiian anchialine ecosystem.  相似文献   

6.
Irrigated pondfields and rainfed field systems represented alternative pathways of agricultural intensification that were unevenly distributed across the Hawaiian Archipelago prior to European contact, with pondfields on wetter soils and older islands and rainfed systems on fertile, moderate-rainfall upland sites on younger islands. The spatial separation of these systems is thought to have contributed to the dynamics of social and political organization in pre-contact Hawai’i. However, deep stream valleys on older Hawaiian Islands often retain the remains of rainfed dryland agriculture on their lower slopes. We evaluated why rainfed agriculture developed on valley slopes on older but not younger islands by comparing soils of Pololū Valley on the young island of Hawai’i with those of Hālawa Valley on the older island of Moloka’i. Alluvial valley-bottom and colluvial slope soils of both valleys are enriched 4–5-fold in base saturation and in P that can be weathered, and greater than 10-fold in resin-extractable P and weatherable Ca, compared to soils of their surrounding uplands. However, due to an interaction of volcanically driven subsidence of the young island of Hawai’i with post-glacial sea level rise, the side walls of Pololū Valley plunge directly into a flat valley floor, whereas the alluvial floor of Hālawa Valley is surrounded by a band of fertile colluvial soils where rainfed agricultural features were concentrated. Only 5% of Pololū Valley supports colluvial soils with slopes between 5° and 12° (suitable for rainfed agriculture), whereas 16% of Hālawa Valley does so. The potential for integrated pondfield/rainfed valley systems of the older Hawaiian Islands increased their advantage in productivity and sustainability over the predominantly rainfed systems of the younger islands.  相似文献   

7.
Lava tube cave ecosystems on the volcanic islands of Hawai‘i support communities of rare and highly specialized cave arthropods. In these cave ecosystems, plant roots, both living and dead, provide the main energy source for cave animals. Loss of deep-rooted plants over caves will affect populations of cave-adapted animals living below. Furthermore, the loss of native plant species will likely eliminate host specific cave animals. Thus, identification of plant roots currently found in caves is necessary for the development of effective management actions that encourage the growth of appropriate deep-rooted plant species, thereby protecting the underlying cave ecosystem. We used molecular techniques to identify plant roots found within cave ecosystems on the islands of Maui and Hawai‘i. Sequences of the internal transcribed spacer (ITS) regions and the 5.8S gene of nuclear ribosomal DNA from cave roots were compared to sequences of known plant species either collected on the surface over the footprint of each cave or to sequences accessioned in GenBank. Roots in the cave ecosystem studied on Maui belonged to two alien tree species: Eucalyptus tereticornis and Grevillea robusta. Within the Hawai‘i cave ecosystem, roots of two plant species were identified: the alien tree G. robusta and the native vine Cocculus orbiculatus. The Maui cave ecosystem supports populations of at least 28 species of arthropods, including eight that are blind obligate cave inhabitants. The Hawai‘i cave ecosystem supports 18 arthropod species, of which three are cave-adapted. Creating protected reserves around biologically significant caves, controlling, and preventing the introduction of harmful invasive plant species within the cave footprint, and encouraging the establishment of deep-rooted native plant species is essential for the continued survival of the unique ecosystems found within Hawaiian lava tube cave systems.  相似文献   

8.
Studies investigating the genetic variation of invasive species render opportunities to better understand the dynamics of biological invasions from an ecological and evolutionary perspective. In this study, we investigate fine-scale population genetic structure of invasive Senecio madagascariensis (fireweed) using microsatellite markers to determine levels of genetic diversity and how it pertains to introduction history of this species within and among the Hawaiian Islands. Dispersal patterns were interpreted and, together with a habitat suitability analysis, we aim to describe the potential range expansion of S. madgascariensis within the islands. Bayesian and frequency-based analyses revealed genetic structure with two major genetic demes corresponding to the two fireweed-infested islands of Maui and Hawaii. Both these demes showed further genetic sub-structure, each consisting of three genetically distinct subgroups. Overall, fireweed showed significant levels of inbreeding. Major genetic demes (Maui and Hawaii) differed in observed heterozygosities, inbreeding and genetic structure, each harbouring a large proportion of private alleles. In contrast to the current understanding of fireweed’s introduction history between the Hawaiian Islands, fine-scale population genetic parameters suggest that this species has been introduced at least twice, possibly even more, to the archipelago. Spatial analyses also revealed high correlation between genetic similarity and geographical proximity (>2 km apart) followed by a sharp decline. In addition, a single population was identified that likely resulted from a rare human- or animal-mediated extreme long-distance dispersal event from Maui to Hawaii. Bayesian and likelihood estimates of ‘first generation migrants’ also concurred that contemporary dispersal occurs more frequently over smaller spatial scales than larger scales. These findings indicate that spread in this species occurs primarily via a stratified strategy. Predictions from habitat suitability models indicate all Hawaiian Islands as highly suitable for fireweed invasion and the movement of propagules to currently uninfested islands and outlying suitable habitats should be avoided to circumvent further expansions of the invasion.  相似文献   

9.
Paleoenvironmental and archaeological investigations from the ’Ewa Plain of O’ahu provide insight into the problem of understanding lowland native forest loss in Hawai’i. Data from pollen analysis of a pond core record, avian paleontology, and archeology, document a precipitous decline of the native forest starting before Polynesian settlement on the ’Ewa Plain but after Polynesian colonization of O’ahu. It is hypothesized that rats, introduced by Polynesian colonizers, increased exponentially in the absence of significant predators or competitors, feeding on a largely endemic vegetation that had evolved in the absence of mammalian predators. Rats radiated ahead of human colonizers on O’ahu, eating their way through the vegetation, perhaps before the colonizers had encountered much of the pristine lowland forest into which the rats had radiated. This hypothesis is supported by several observations, including the almost complete absence of extinct or extirpated avian faunal remains in archaeological deposits, the present distribution of endemic vegetation in Hawai’i, rat ecology, population biology, and other evidence.
J. Stephen AthensEmail:
  相似文献   

10.
Endemic Hawaiian species in the genus Plantago show considerable morphological and ecological diversity. Despite their variation, a recent phylogenetic analysis based on DNA sequence data showed that the group is monophyletic and that sequence variation among species and morphotypes is low. This lack of sequence polymorphisms resulted in an inability to resolve species and population affinities within the most recently derived clade of this lineage. To assess species boundaries, population genetic structure and interpopulation connectivity among the morphologically and ecologically distinct populations within this clade, genetic variation was examined using eight microsatellite loci. Within‐population genetic diversity was found to be lowest in the Maunaiu, Hawai'i population of the endangered P. hawaiensis, and highest in the large P. pachyphylla population from 'Eke, West Maui. Isolation by distance across the range of populations was detected and indicated restricted dispersal. This result is likely to be attributable to few interisland dispersal events in the evolutionary history of this lineage. Genetic differentiation within islands tended to be higher among populations occurring in contrasting bog and woodland habitats, suggesting ecological barriers to gene flow and the potential role of ecological divergence in population diversification. Overall, these results are consistent with findings from phylogenetic analysis of the entire lineage. Our data bring new insights regarding patterns of dispersal and population genetic structure to this endemic and endangered group of island taxa. As island environments become increasingly fragmented, information of this type has important implications for the successful management of these fragile populations and habitats.  相似文献   

11.
Deep-sea spiny eels (Notacanthidae) were previously reported from the Hawaiian Archipelago; however, these reports lacked detailed information to confirm the identity of the species. We provide collection and taxonomic data for the earlier records. The first central Pacific specimen of Lipogenys gillii is reported from Hawai’i Island. A record of Notacanthus abbotti from the Hancock Seamounts, at the northern end of the Archipelago, is confirmed. Specimens from Maui, main Hawaiian Islands, previously reported as N. chemnitzii, are reidentified as N. abbotti. The Hawaiian records of notacanthids are the only reports of the family from the Pacific tectonic plate.  相似文献   

12.
Native species richness commonly declines with increasing altitude, but patterns of introduced species richness across altitudinal gradients have been less frequently studied. We surveyed introduced roadside weeds along altitudinal transects ranging from 30 to 4,100 m in Hawai’i, with the objectives of (1) testing the hypothesis that a mass effect due to mixing of tropical and temperate species at mid-elevation promotes a hump-shaped pattern of introduced species richness with altitude, and (2) testing the potential roles of anthropogenic activity, energy (temperature) and water-energy dynamics (productivity-diversity hypothesis) in determining introduced weed richness. A total of 178 introduced weeds were recorded. Introduced weed richness does not decline monotonically with altitude. Rather, mixing of tropical and temperate species helps to maintain high mean richness up to 2,000 m, suggesting a mass effect, but without a distinct richness peak. Patchy occurrence of a transformer species, Pennisetum clandestinum, introduced high variance in richness at mid-elevations. General linear models considering estimated actual evapotranspiration (AET, a measure of energy-water dynamics) together with an index of human activity (distance from urban area or length of major roads) accounted for more variance in introduced weed richness than models with energy alone (temperature) and human activity. Native Hawaiian species richness along roadsides was also weakly correlated with AET but negatively associated with human activity. Our observed association between introduced species richness and AET mirrors patterns reported for native species richness around the world, indicating that AET-richness patterns can develop on a short time scale (on the order of 100 years). To test the generality of introduced weed richness patterns, we tried using the Hawai’i island model to predict weed richness on the neighboring island of Maui. Although weed richness on Maui was under-predicted, the same predictors (human activity and AET) were important on Maui. Scaling for differences in regional human population density or economic activity (both higher on Maui) may allow more accurate and transferable quantitative predictions of introduced weed richness patterns.  相似文献   

13.
We cultured avian pox (Avipoxvirus spp.) from lesions collected on Hawai‘i, Maui, Moloka‘i, and ‘Oahu in the Hawaiian Islands from 15 native or non-native birds representing three avian orders. Phylogenetic analysis of a 538 bp fragment of the gene encoding the virus 4b core polypeptide revealed two distinct variant clusters, with sequences from chickens (fowlpox) forming a third distinct basal cluster. Pox isolates from one of these two clusters appear closely related to canarypox and other passerine pox viruses, while the second appears more specific to Hawai‘i. There was no evidence that birds were infected simultaneously with multiple pox virus variants based on evaluation of multiples clones from four individuals. No obvious temporal or geographic associations were observed and strict host specificity was not apparent among the 4b-defined field isolates. We amplified a 116 bp 4b core protein gene fragment from an ‘Elepaio (Chasiempis sandwichensis) collected in 1900 on Hawai‘i Island that clustered closely with the second of the two variants, suggesting that this variant has been in Hawai‘i for at least 100 years. The high variation detected between the three 4b clusters provides evidence for multiple, likely independent introductions, and does not support the hypothesis of infection of native species through introduction of infected fowl. Preliminary experimental infections in native Hawai‘i ‘Amakihi (Hemignathus virens) suggest that the 4b-defined variants may be biologically distinct, with one variant appearing more virulent. These pox viruses may interact with avian malaria (Plasmodium relictum), another introduced pathogen in Hawaiian forest bird populations, through modulation of host immune responses.  相似文献   

14.
Chromosomal sequences and interisland colonizations in hawaiian Drosophila   总被引:6,自引:1,他引:5  
Carson HL 《Genetics》1983,103(3):465-482
Of 103 picture-winged Drosophila species endemic to the high Hawaiian islands, all but three are endemic to single islands or island complexes. They are presumed to have evolved in situ on each island. The banding pattern sequences of the five major polytene chromosomes of these species have been mapped to a single set of Standard sequences. Sequential variation among these chromosomes is due to 213 paracentric inversions. An atlas of their break points is provided. Geographical, morphological and behavioral data may be used to supplement the cytological information in tracing ancestry. Starting at the newer end of the archipelago, the 26 species of the Island of Hawaii (less than 700,000 years old) are inferred to have been derived from 19 founders, 15 from the Maui complex, three from Oahu and one from Kauai. The existence of 40 Maui complex species is explicable as resulting from 12 founders, ten from Oahu and two from Kauai. The 29 Oahu species can be explained by 12 founder events, five from Kauai and seven from Maui complex (summary in Figure 5). Although the ancestry of two Kauai species can be traced to newer islands, the ten remaining ones on this island (age about 5.6 million years) are apparently ancient elements in the fauna, relating ultimately to Palearctic continental sources.  相似文献   

15.
Endemic Hawaiian Silene colonize new lava flows and are outcompeted as the ground ages. They illustrate the genetic processes operating in the evolution of pioneering island plants. The volcanic history of the Hawaiian Islands allows an estimation of the age of these plant populations. In this study, populations of S. struthioloides from Maui and the older part of the island of Hawaii, and S. hawaiiensis from the youngest volcanoes of the island of Hawaii were analyzed by enzyme electrophoresis. The genetic structures of these populations were placed in a geographic and geologic context. Silene is much more polymorphic on the older island, Maui. Genetic variation appears to have been lost in the colonization of the youngest island, Hawaii. Interestingly, some loci for populations on the younger volcanoes of the island of Hawaii are monomorphic for alleles not found in populations on the older part of Hawaii. Recurrent colonizations are accompanied with founder effects, and restricted gene flow among populations has led to isolation and genetic drift. This has resulted in genetic and morphological differentiâtion of Silene populations on the youngest volcanoes.  相似文献   

16.
We analyzed long-term winter survey data (1956–2007) for three endangered waterbirds endemic to the Hawaiian Islands, the Hawaiian moorhen (Gallinula chloropus sandvicensis), Hawaiian coot (Fulica alai), and Hawaiian stilt (Himantopus mexicanus knudseni). Time series were analyzed by species–island combinations using generalized additive models, with alternative models compared using Akaike information criterion (AIC). The best model included three smoothers, one for each species. Our analyses show that all three of the endangered Hawaiian waterbirds have increased in population size over the past three decades. The Hawaiian moorhen increase has been slower in more recent years than earlier in the survey period, but Hawaiian coot and stilt numbers still exhibit steep increases. The patterns of population size increase also varied by island, although this effect was less influential than that between species. In contrast to earlier studies, we found no evidence that rainfall affects counts of the target species. Significant population increases were found on islands where most wetland protection has occurred (Oahu, Kauai), while weak or no increases were found on islands with few wetlands or less protection (Hawaii, Maui). Increased protection and management, especially on Maui where potential is greatest, would likely result in continued population gains, increasing the potential for meeting population recovery goals.  相似文献   

17.
The Pleistocene geological history of the Hawaiian Islands is becoming well understood. Numerous predictions about the influence of this history on the genetic diversity of Hawaiian organisms have been made, including the idea that changing sea levels would lead to the genetic differentiation of populations isolated on individual volcanoes during high sea stands. Here, we analyse DNA sequence data from two closely related, endemic Hawaiian damselfly species in order to test these predictions, and generate novel insights into the effects of Pleistocene glaciation and climate change on island organisms. Megalagrion xanthomelas and Megalagrion pacificum are currently restricted to five islands, including three islands of the Maui Nui super-island complex (Molokai, Lanai, and Maui) that were connected during periods of Pleistocene glaciation, and Hawaii island, which has never been subdivided. Maui Nui and Hawaii are effectively a controlled, natural experiment on the genetic effects of Pleistocene sea level change. We confirm well-defined morphological species boundaries using data from the nuclear EF-1alpha gene and show that the species are reciprocally monophyletic. We perform phylogeographic analyses of 663 base pairs (bp) of cytochrome oxidase subunit II (COII) gene sequence data from 157 individuals representing 25 populations. Our results point to the importance of Pleistocene land bridges and historical island habitat availability in maintaining inter-island gene flow. We also propose that repeated bottlenecks on Maui Nui caused by sea level change and restricted habitat availability are likely responsible for low genetic diversity there. An island analogue to northern genetic purity and southern diversity is proposed, whereby islands with little suitable habitat exhibit genetic purity while islands with more exhibit genetic diversity.  相似文献   

18.
Woody perennial plants on islands have repeatedly evolved from herbaceous mainland ancestors. Although the majority of species in Euphorbia subgenus Chamaesyce section Anisophyllum (Euphorbiaceae) are small and herbaceous, a clade of 16 woody species diversified on the Hawaiian Islands. They are found in a broad range of habitats, including the only known C4 plants adapted to wet forest understories. We investigate the history of island colonization and habitat shift in this group. We sampled 153 individuals in 15 of the 16 native species of Hawaiian Euphorbia on six major Hawaiian Islands, plus 11 New World close relatives, to elucidate the biogeographic movement of this lineage within the Hawaiian island chain. We used a concatenated chloroplast DNA data set of more than eight kilobases in aligned length and applied maximum likelihood and Bayesian inference for phylogenetic reconstruction. Age and phylogeographic patterns were co‐estimated using BEAST. In addition, we used nuclear ribosomal ITS and the low‐copy genes LEAFY and G3pdhC to investigate the reticulate relationships within this radiation. Hawaiian Euphorbia first arrived on Kaua`i or Ni`ihau ca. 5 million years ago and subsequently diverged into 16 named species with extensive reticulation. During this process Hawaiian Euphorbia dispersed from older to younger islands through open vegetation that is disturbance‐prone. Species that occur under closed vegetation evolved in situ from open vegetation of the same island and are only found on the two oldest islands of Kaua`i and O`ahu. The biogeographic history of Hawaiian Euphorbia supports a progression rule with within‐island shifts from open to closed vegetation.  相似文献   

19.
Here we report the first conclusive evidence of an introduced reptile (Chamaeleo jacksonii) feeding on Hawaiian taxa, including 11 snails in four endemic genera from two families, including four individuals of an endangered species (Achatinella mustelina), and native insects in five genera. Native Hawaiian invertebrates were discovered in the dissected stomachs of wild caught Jackson’s chameleons collected from June to November 2009 on the island of Oahu. Although Jackson’s chameleons were introduced to the Hawaiian Islands in the early 1970s, ecological impacts have never been documented. Of particular concern is the fact that chameleons have previously only rarely been found in native Hawaiian habitat, although 12 were recently collected in a mid-elevation native forest, an area that is not likely to be suitable for their long-term persistence, but that is adjacent to higher elevation pristine forest where endemic prey are abundant and favorable climatic conditions exist for chameleon persistence. One concern is that Jacksons’s chameleons may be undergoing a range expansion into upper elevation pristine forests. If chameleons reach and establish populations in these areas, devastating impacts to the native ecosystem are possible. A thorough understanding of the impacts of chameleons on Hawaiian fauna will require additional evaluation and sampling, but dissemination of this discovery in a timely fashion is important as it provides new information regarding this threat. Monitoring and collection of chameleons is ongoing, particularly in native Hawaiian forest habitats at mid and upper elevations (600–1,300 m).  相似文献   

20.
Mariana Swiftlets (Aerodramus bartschi) are federally listed as endangered, with populations currently limited to just three islands in the Mariana Islands plus an introduced population on the Hawaiian island of O'ahu. Before efforts are made to reintroduce Mariana Swiftlets to other islands in the Mariana archipelago, additional information is needed concerning their breeding biology. Therefore, our objective was to examine the reproductive biology of Mariana Swiftlets over five annual cycles on the Hawaiian island of O'ahu. This introduced population used a human‐made tunnel for roosting and nesting, and was studied as a surrogate to negate interference with endangered populations in the Mariana Islands. Active nests (= 478) were observed in every month of the year, with peak nesting activity between May and September. All clutches consisted of one egg. Mean duration of incubation and nestling periods were 23.9 d (range = 18–30 d, = 233) and 55.0 d (range = 41–84 d, = 228), respectively. Estimated nest success was 63%. Over half (52%) of nest failures were attributed to eggs found on the tunnel floor. Predation by rats (Rattus spp.) was also an important cause of nest failure and often resulted in the loss of most active nests. However, Mariana Swiftlets did re‐nest after these predation events. Our results suggest that rat predation of both nests and adults may limit growth of the Mariana Swiftlet population on O'ahu, and could also affect the chances for successful establishment of relocated populations in the Mariana Islands. Another limiting factor on O'ahu is that only one nesting site is apparently available on the island. Current goals for downlisting Mariana Swiftlets from endangered to threatened include establishing populations on Guam, Rota, Aguiguan, and Saipan. To meet these goals, the population of Mariana Swiftlets on O'ahu can be important for testing reintroduction techniques, learning more about the natural history of these swiftlets, and providing individuals for reintroduction efforts in the Mariana Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号