首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We describe an enormous Late Cretaceous fossil bird from Kazakhstan, known from a pair of edentulous mandibular rami (greater than 275 mm long), which adds significantly to our knowledge of Mesozoic avian morphological and ecological diversity. A suite of autapomorphies lead us to recognize the specimen as a new taxon. Phylogenetic analysis resolves this giant bird deep within Aves as a basal member of Ornithuromorpha. This Kazakh fossil demonstrates that large body size evolved at least once outside modern birds (Neornithes) and reveals hitherto unexpected trophic diversity within Cretaceous Aves.  相似文献   

2.
Substantial differences in pelvic osteology and soft tissues separate crown group crocodylians (Crocodylia) and birds (Neornithes). A phylogenetic perspective including fossils reveals that these disparities arose in a stepwise pattern along the line to extant birds, with major changes occurring both within and outside Aves. Some character states that preceded the origin of Neornithes are only observable or inferable in extinct taxa. These transitional states are important for recognizing the derived traits of neornithines. Palaeontological and neontological data are vital for reconstructing the sequence of pelvic changes along the line to Neornithes. Soft tissue correlation with osteological structures allows changes in soft tissue anatomy to be traced along a phylogenetic framework, and adds anatomical significance to systematic characters from osteology. Explicitly addressing homologies of bone surfaces reveals many subtleties in pelvic evolution that were previously unrecognized or implicit. I advocate that many anatomical features often treated as independent characters should be interpreted as different character states of the same character. Relatively few pelvic character states are unique to Neornithes. Indeed, many features evolved quite early along the line to Neornithes, blurring the distinction between 'avian' and 'non-avian' anatomy.  相似文献   

3.
4.
江苏泗洪下草湾中中新世脊椎动物群——6.鸟纲   总被引:6,自引:0,他引:6  
本文记述了近年来在江苏泗洪下草湾组中补采到的6种鸟类,其中包括天岗琵鹭 Platalea tiangangensis sp. nov.和松林庄古石鸡 Palaeoalectoris songlinensis gen. et sp. nov.,前者系琵鹭属迄今最早的记录,后者为雉科鹑族目前已知最早的成员.  相似文献   

5.
Some probe-foraging birds locate their buried prey by detecting mechanical vibrations in the substrate using a specialized tactile bill-tip organ comprising mechanoreceptors embedded in densely clustered pits in the bone at the tip of their beak. This remarkable sensory modality is known as ‘remote touch’, and the associated bill-tip organ is found in probe-foraging taxa belonging to both the palaeognathous (in kiwi) and neognathous (in ibises and shorebirds) clades of modern birds. Intriguingly, a structurally similar bill-tip organ is also present in the beaks of extant, non-probing palaeognathous birds (e.g. emu and ostriches) that do not use remote touch. By comparison with our comprehensive sample representing all orders of extant modern birds (Neornithes), we provide evidence that the lithornithids (the most basal known palaeognathous birds which evolved in the Cretaceous period) had the ability to use remote touch. This finding suggests that the occurrence of the vestigial bony bill-tip organ in all modern non-probing palaeognathous birds represents a plesiomorphic condition. Furthermore, our results show that remote-touch probe foraging evolved very early among the Neornithes and it may even have predated the palaeognathous–neognathous divergence. We postulate that the tactile bony bill-tip organ in Neornithes may have originated from other snout tactile specializations of their non-avian theropod ancestors.  相似文献   

6.
The craniofacial air sac system of Mesozoic birds (Aves)   总被引:2,自引:0,他引:2  
Birds are characterized by pneumatization of their skeletons by epithelial diverticula from larger, air—filled cavities. The diverticula—or 'air sacs'—that invade the postcranium result from outgrowths of the lungs; postcranial pneumaticity has been very well studied. Much more poorly understood are the air sacs that pneumatize the skull. Study of craniofacial pneumaticity in modern birds (Neornithes) indicates the presence of two separate systems: nasal pneumaticity and tympanic pneumaticity. The lacrimal and maxillary bones are pneumatized by diverticula of the main paranasal cavity, the antorbital sinus. There are five tympanic diverticula in neornithines that pneumatic the quadrate, articulare and the bones of the braincase. The pneumatic features of the following six genera of Mesozoic birds are examined: Archaeopteryx, Enaliornis, Baptornis, Parahesperornis, Hesperornis and Ichthyornis. Despite the 'archaic' aspect of most of these birds, many of the pneumatic features of neornithines are found in Mesozoic birds and are considered primitive for Aves. The phylogenetic levels at which most of the avian pneumatic features arose within Archosauria are uncertain. Until the phylogenetic levels at which homologous pneumatic features arose are determined, it is unwise to use most pneumatic characters in the discussion of avian origins. Within avian phylogeny, Ornithurae and Neornithes are well–supported by pneumatic synapomorphies. There is a trend towards reduction of craniofacial pneumaticity within Hesperornithiformes. Within Neornithes, four derived pneumatic characters suggest that the Palaeognathae (ratites and tinamous) is monophyletic.  相似文献   

7.
The avian wrist is extraordinarily adapted for flight. Its intricate osteology is constructed to perform four very different, but extremely important, flight-related functions. (1) Throughout the downstroke, the cuneiform transmits force from the carpometacarpus to the ulna and prevents the manus from hyperpronating. (2) While gliding or maneuvering, the scapholunar interlocks with the carpometacarpus and prevents the manus from supinating. By employing both carpal bones simultaneously birds can lock the manus into place during flight. (3) Throughout the downstroke-upstroke transition, the articular ridge on the distal extremity of the ulna, in conjuction with the cuneiform, guides the manus from the plane of the wing toward the body. (4) During take-off or landing, the upstroke of some heavy birds exhibits a pronounced flick of the manus. The backward component of this flick is produced by reversing the wrist mechanism that enables the manus to rotate toward the body during the early upstroke. The upward component of the flick is generated by mechanical interplay between the ventral ramus of the cuneiform, the ventral ridge of the carpometacarpus, and the ulnocarpo-metacarpal ligament. Without the highly specialized osteology of the wrist it is doubtful that birds would be able to carry out successfully the wing motions associated with flapping flight. Yet in Archaeopteryx, the wrist displays a very different morphology that lacks all the key features found in the modern avian wrist. Therefore, Archaeopteryx was probably incapable of executing the kinematics of modern avian powered flight.  相似文献   

8.
The excursions of wing elements and the activity of eleven shoulder muscles were studied by cineradiography and electromyography in European starlings (Sturnus vulgaris) flying in a wind tunnel at speeds of 9–20 m s?1. At the beginning of downstroke the humerus is elevated 80–90° above horizontal, and both elbow and wrist are extended to 90° or less. During downstroke, protraction of the humerus (55°) remains constant; elbow and wrist are maximally extended (120° and 160°, respectively) as the humerus passes through a horizontal orientation. During the downstroke-upstroke transition humeral depression ceases (at about 20° below horizontal) and the humerus begins to retract. However, depression of the distal wing continues by rotation of the humerus and adduction of the carpometacarpus. Humeral retraction (to within about 30° of the body axis) is completed early in upstroke, accompanied by flexion of the elbow and carpometacarpus. Thereafter the humerus begins to protract as elevation continues. At mid-upstroke a rapid counterrotation of the humerus reorients the ventral surface of the wing to face laterad; extension of the elbow and carpometacarpus are initiated sequentially. The upstroke-downstroke transition is characterized by further extension of the elbow and carpometacarpus, and the completion of humeral protraction. Patterns of electromyographic activity primarily coincide with the transitional phases of the wingbeat cycle rather than being confined to downstroke or upstroke. Thus, the major downstroke muscles (pectoralis, coracobrachialis caudalis, sternocoracoideus, subscapularis, and humerotriceps) are activated in late upstroke to decelerate, extend, and reaccelerate the wing for the subsequent downstroke; electromyographic activity ends well before the downstroke is completed. Similarly, the upstroke muscles (supracoracoideus, deltoideus major) are activated in late downstroke to decelerate and then reaccelerate the wing into the upstroke; these muscles are deactivated by mid-upstroke. Only two muscles (scapulohumeralis caudalis, scapulotriceps) exhibit electromyographic activity exclusively during the downstroke. Starlings exhibit a functional partitioning of the two heads of the triceps (the humerotriceps acts with the pectoralis group, and does not overlap with the scapulotriceps). The biphasic pattern of the biceps brachii appears to correspond to this partitioning.  相似文献   

9.
The pattern, timing and extent of the evolutionary radiation of anatomically modern birds (Neornithes) remains contentious: dramatically different timescales for this major event in vertebrate evolution have been recovered by the 'clock-like' modelling of molecular sequence data and from evidence extracted from the known fossil record. Because current synthesis would lead us to believe that fossil and nonfossil evidence conflict with regard to the neornithine timescale, especially at its base, it is high time that available data are reconciled to determine more exactly the evolutionary radiation of modern birds. In this review we highlight current understanding of the early fossil history of Neornithes in conjunction with available phylogenetic resolution for the major extant clades, as well as recent advancements in genetic methods that have constrained time estimates for major evolutionary divergences. Although the use of molecular approaches for timing the radiation of Neornithes is emphasized, the tenet of this review remains the fossil record of the major neornithine subdivisions and better-preserved taxa. Fossils allowing clear phylogenetic constraint of taxa are central to future work in the production of accurate molecular calibrations of the neornithine evolutionary timescale.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 141 , 153–177.  相似文献   

10.
A crop adapted for an herbivorous diet of seeds has previously been documented in the Early Cretaceous birds Sapeornis and Hongshanornis. Here we report on several specimens of Yanornis that preserve a crop containing fish. One specimen preserves two whole fish in the oesophagus, indicating that Early Cretaceous birds shared trophic specializations with Neornithes for the increased energetic demands of flight – namely the storing of food for later consumption when the stomach is full. Whole fish also indicate that despite their presence, teeth were not used to orally process food, suggesting the hypertrophied dentition in this taxon were utilized in prey capture. The presence of macerated fish bones in the crop of other specimens indicates the highly efficient advanced muscular system of peristalsis responsible for moving ingested items between different segments of the alimentary canal was also in place. Despite the fact many features of the modern avian alimentary canal are inferred to compensate for the absence of teeth in birds (expandable oesophagus, grinding gizzard), the derived alimentary canal was apparently present in toothed Cretaceous birds. Although Yanornis was considered to have switched their diet from piscivorous to herbivorous, based on position and morphology we reinterpret the gastroliths reported in one specimen as sand impacted in the intestines, and reconstruct the taxon as primarily piscivorous. This is a novel interpretation for fossilized gastroliths, and the first documentation of this condition in the fossil record.  相似文献   

11.
1. Rats were treated with dexamethasone for 4 days before measurement of the rates of lactate formation [which is an index of hexose transport; see Challiss, Lozeman, Leighton & Newsholme (1986) Biochem. J. 233, 377-381] and glycogen synthesis in response to various concentrations of insulin in isolated incubated soleus and extensor digitorum longus muscle preparations. 2. The concentration of insulin required to stimulate these processes half-maximally in soleus and extensor digitorum longus muscles isolated from control rats was about 100 muunits/ml. 3. Dexamethasone increases the concentration of insulin required to stimulate glycolysis half-maximally in soleus and extensor digitorum longus preparations to 250 and 300 muunits/ml respectively. The respective insulin concentrations necessary to stimulate glycogen synthesis half-maximally were about 430 and 370 muunits/ml for soleus and extensor digitorum longus muscle preparations isolated from steroid-treated rats. 5. Dexamethasone treatment did not change the amount of insulin bound to soleus muscle.  相似文献   

12.
Previous work has shown that the relative proportions of wing components (i.e., humerus, ulna, carpometacarpus) in birds are related to function and ecology, but these have rarely been investigated in a phylogenetic context. Waterbirds including “Pelecaniformes,” Ciconiiformes, Procellariiformes, Sphenisciformes, and Gaviiformes form a highly supported clade and developed a great diversity of wing forms and foraging ecologies. In this study, forelimb disparity in the waterbird clade was assessed in a phylogenetic context. Phylogenetic signal was assessed via Pagel's lambda, Blomberg's K, and permutation tests. We find that different waterbird clades are clearly separated based on forelimb component proportions, which are significantly correlated with phylogeny but not with flight style. Most of the traditional contents of “Pelecaniformes” (e.g., pelicans, cormorants, and boobies) cluster with Ciconiiformes (herons and storks) and occupy a reduced morphospace. These taxa are closely related phylogenetically but exhibit a wide range of ecologies and flight styles. Procellariiformes (e.g., petrels, albatross, and shearwaters) occupy a wide range of morphospace, characterized primarily by variation in the relative length of carpometacarpus and ulna. Gaviiformes (loons) surprisingly occupy a wing morphospace closest to diving petrels and penguins. Whether this result may reflect wing proportions plesiomorphic for the waterbird clade or a functional signal is unclear. A Bayesian approach detecting significant rate shifts across phylogeny recovered two such shifts. At the base of the two sister clades Sphenisciformes + Procellariiformes, a shift to an increase evolutionary rate of change is inferred for the ulna and carpometacarpus. Thus, changes in wing shape begin prior to the loss of flight in the wing‐propelled diving clade. Several shifts to slower rate of change are recovered within stem penguins.  相似文献   

13.
O Slaby 《Folia morphologica》1990,38(3):241-252
In birds, fusion of the carpal elements to a carpometacarpus during morphogenesis takes place during the evolutionary process at different rates, i.e. heterochronically, in different groups (developmental radiations), like the elements of the nasal apparatus in Sauropsida. This is because new characters spread and are pushed back at different rates from the terminal to the initial levels of morphogenesis. The shift is most likely automatic, in that it does not require further mutation, but it is set in motion by selection. Selection does not take effect only when an adequate character (which at first is very imperfect) is accepted; it also causes the character to grow, pushes it back towards the threshold of morphogenesis and thereby increases its perfection and its fitness. The path along which the shift takes place is determined by the morphogenetic route of recapitulation of the ancestral structure and since this movement is caused by protracted stabilizing selection, we can describe it as orthoselective movement. This means that recapitulation is flexible. At the same time, cellular and epigenetic interactions with surrounding structures are reciprocally influenced. The shift continues until adequate adaptation and perfection have been achieved. Stabilizing selection then ceases to act. The shift shows the evolutionary trend or further developmental possibilities. Its chief role is probably in the development of specializations.  相似文献   

14.
In recent years, avian systematics has been characterized by a diminished reliance on morphological cladistics of modern taxa, intensive palaeornithogical research stimulated by new discoveries and an inundation by analyses based on DNA sequences. Unfortunately, in contrast to significant insights into basal origins, the broad picture of neornithine phylogeny remains largely unresolved. Morphological studies have emphasized characters of use in palaeontological contexts. Molecular studies, following disillusionment with the pioneering, but non-cladistic, work of Sibley and Ahlquist, have differed markedly from each other and from morphological works in both methods and findings. Consequently, at the turn of the millennium, points of robust agreement among schools concerning higher-order neornithine phylogeny have been limited to the two basalmost and several mid-level, primary groups. This paper describes a phylogenetic (cladistic) analysis of 150 taxa of Neornithes, including exemplars from all non-passeriform families, and subordinal representatives of Passeriformes. Thirty-five outgroup taxa encompassing Crocodylia, predominately theropod Dinosauria, and selected Mesozoic birds were used to root the trees. Based on study of specimens and the literature, 2954 morphological characters were defined; these characters have been described in a companion work, approximately one-third of which were multistate (i.e. comprised at least three states), and states within more than one-half of these multistate characters were ordered for analysis. Complete heuristic searches using 10 000 random-addition replicates recovered a total solution set of 97 well-resolved, most-parsimonious trees (MPTs). The set of MPTs was confirmed by an expanded heuristic search based on 10 000 random-addition replicates and a full ratchet-augmented exploration to ascertain global optima. A strict consensus tree of MPTs included only six trichotomies, i.e. nodes differing topologically among MPTs. Bootstrapping (based on 10 000 replicates) percentages and ratchet-minimized support (Bremer) indices indicated most nodes to be robust. Several fossil Neornithes (e.g. Dinornithiformes, Aepyornithiformes) were placed within the ingroup a posteriori either through unconstrained, heursitic searches based on the complete matrix augmented by these taxa separately or using backbone-constraints. Analysis confirmed the topology among outgroup Theropoda and achieved robust resolution at virtually all levels of the Neornithes. Findings included monophyly of the palaeognathous birds, comprising the sister taxa Tinamiformes and ratites, respectively, and the Anseriformes and Galliformes as monophyletic sister-groups, together forming the sister-group to other Neornithes exclusive of the Palaeognathae (Neoaves). Noteworthy inferences include: (i) the sister-group to remaining Neoaves comprises a diversity of marine and wading birds; (ii) Podicipedidae are the sister-group of Gaviidae, and not closely related to the Phoenicopteridae, as recently suggested; (iii) the traditional Pelecaniformes, including the shoebill (Balaeniceps rex) as sister-taxon to other members, are monophyletic; (iv) traditional Ciconiiformes are monophyletic; (v) Strigiformes and Falconiformes are sister-groups; (vi) Cathartidae is the sister-group of the remaining Falconiformes; (vii) Ralliformes (Rallidae and Heliornithidae) are the sister-group to the monophyletic Charadriiformes, with the traditionally composed Gruiformes and Turniciformes (Turnicidae and Mesitornithidae) sequentially paraphyletic to the entire foregoing clade; (viii) Opisthocomus hoazin is the sister-taxon to the Cuculiformes (including the Musophagidae); (ix) traditional Caprimulgiformes are monophyletic and the sister-group of the Apodiformes; (x) Trogoniformes are the sister-group of Coliiformes; (xi) Coraciiformes, Piciformes and Passeriformes are mutually monophyletic and closely related; and (xii) the Galbulae are retained within the Piciformes. Unresolved portions of the Neornithes (nodes having more than one most-parsimonious solution) comprised three parts of the tree: (a) several interfamilial nodes within the Charadriiformes; (b) a trichotomy comprising the (i) Psittaciformes, (ii) Columbiformes and (iii) Trogonomorphae (Trogoniformes, Coliiformes) + Passerimorphae (Coraciiformes, Piciformes, Passeriformes); and (c) a trichotomy comprising the Coraciiformes, Piciformes and Passeriformes. The remaining polytomies were among outgroups, although several of the highest-order nodes were only marginally supported; however, the majority of nodes were resolved and met or surpassed conventional standards of support. Quantitative comparisons with alternative hypotheses, examination of highly supportive and diagnostic characters for higher taxa, correspondences with prior studies, complementarity and philosophical differences with palaeontological phylogenetics, promises and challenges of palaeogeography and calibration of evolutionary rates of birds, and classes of promising evidence and future directions of study are reviewed. Homology, as applied to avian examples of apparent homologues, is considered in terms of recent theory, and a revised annotated classification of higher-order taxa of Neornithes and other closely related Theropoda is proposed. (c) 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149, 1-95.  相似文献   

15.
Ornithuromorpha is the most derived avian group in the Early Cretaceous, advanced members of which encompass all living birds (Neornithes). Here we report on a new basal ornithuromorph bird, Bellulia rectusunguis gen. et sp. nov., represented by a nearly complete skeleton from the Early Cretaceous Jehol Biota in northeastern China. A comprehensive phylogenetic analysis resolved the new taxon in a basal position that is only more derived than Archaeorhynchus and Jianchangornis among ornithuromorphs, increasing the morphological diversity of basal ornithuromorphs. The new specimen has a V‐shaped furcula with a short hypocleidium, a feature otherwise known only in Schizooura among Cretaceous ornithuromorphs. We discuss the implications of the new taxon on the evolution of morphology of primitive ornithuromorphs, particularly of pectoral girdle, sternum and limb proportion pertaining to powered flight. The preserved gastroliths and pedal morphology indicate herbivory and lakeshore adaption for this new species. © 2015 The Linnean Society of London  相似文献   

16.
Avian wing elements have been shown to experience both dorsoventral bending and torsional loads during flapping flight. However, not all birds use continuous flapping as a primary flight strategy. The pelecaniforms exhibit extraordinary diversity in flight mode, utilizing flapping, flap‐gliding, and soaring. Here we (1) characterize the cross‐sectional geometry of the three main wing bone (humerus, ulna, carpometacarpus), (2) use elements of beam theory to estimate resistance to loading, and (3) examine patterns of variation in hypothesized loading resistance relative to flight and diving mode in 16 species of pelecaniform birds. Patterns emerge that are common to all species, as well as some characteristics that are flight‐ and diving‐mode specific. In all birds examined, the distal most wing segment (carpometacarpus) is the most elliptical (relatively high Imax/Imin) at mid‐shaft, suggesting a shape optimized to resist bending loads in a dorsoventral direction. As primary flight feathers attach at an oblique angle relative to the long axis of the carpometacarpus, they are likely responsible for inducing bending of this element during flight. Moreover, among flight modes examined the flapping group (cormorants) exhibits more elliptical humeri and carpometacarpi than other flight modes, perhaps pertaining to the higher frequency of bending loads in these elements. The soaring birds (pelicans and gannets) exhibit wing elements with near‐circular cross‐sections and higher polar moments of area than in the flap and flap‐gliding birds, suggesting shapes optimized to offer increased resistance to torsional loads. This analysis of cross‐sectional geometry has enhanced our interpretation of how the wing elements are being loaded and ultimately how they are being used during normal activities. J. Morphol., 2011. © 2011 Wiley‐Liss,Inc.  相似文献   

17.
Denervation potentiated the cooling-induced contractures and the halothane-cooling contractures of isolated extensor digitorum longus and soleus muscles of the mouse. These effects were more striking in extensor digitorum longus than in soleus muscles. Significant increases in the peak amplitudes of the halothane-cooling contractures of both muscles and of the cooling contractures of soleus muscle were observed within 2 and 7 days of denervation. The potentiation of the contractures persisted for 90 days, the period of this study. Denervation (greater than 2 days) endowed extensor digitorum longus with the ability to generate cooling contractures in the absence of halothane. The rate of tension development of cooling-induced contractures in the absence or presence of halothane was significantly greater in denervated (2-90 days) than in innervated muscles. Denervation also reduced the effectiveness of procaine in inhibiting the halothane-cooling contractures. It is proposed that the potentiation of cooling-induced contractures in denervated muscles results primarily from an increase in the rate of efflux and in the quantity of Ca2+ released from the sarcoplasmic reticulum, upon cooling and (or) when challenged with halothane.  相似文献   

18.
Femoral osteology and soft tissues evolved in a stepwise pattern in archosauromorph reptiles on the line to crown group birds. Crocodylia retains most ancestral archosaurian traits, whereas Dinosauromorpha (including birds) acquired many more derived traits. The complex sequence of changes included major shifts of several thigh muscle insertions. Medial rotation of the proximal femur (e.g. the femoral head) in archosaurs moved the greater trochanter laterally, bringing along the insertion of M. pubo-ischio-femoralis externus. Within Dinosauromorpha, the lesser trochanter moved proximally away from the trochanteric shelf. Presumably the lesser trochanter indicates the insertion of M. iliotrochantericus caudalis whereas the trochanteric shelf indicates the insertion of M. iliofemoralis externus. An accessory trochanter at the base of the lesser trochanter marks the insertion of M. pubo-ischio-femoralis internus 2 in tetanuran theropods. I propose hypotheses for the homologies of several intermuscular lines and other features on the femoral shaft. On the line to Neornithes, most changes of femoral morphology predated Aves and the origin of flight; few femoral features are unique to birds. Overall, the pattern of morphological evolution is consistent with stepwise functional evolution of the hindlimb within Dinosauromorpha on the line to Neornithes. The clade Ornithurae evolved the last few hindlimb apomorphies that characterize extant birds, in conjunction with more flexed hip and knee joints.  相似文献   

19.
Basal avialans have been the focus of numerous histological studies in the past decade, from which different osteohistological patterns have been described. In this review, we look at the osteohistology in selected specimens from the four major avian groups: the long-tailed Avialae (Archaeopteryx and Jeholornithiformes), basal Pygostylia, Enantiornithes and Euornithes. Developmental and evolutionary changes in the three major bone layers are observed throughout the bone cortex of the limbs, may it be interspecific or intraspecific. Most noteworthy is the adaptive change from the overall lamellar/parallel-fibered bone tissue to a fibrolamellar complex in the mid-cortex as of the basal Pygostylia, potentially even as of the Jeholornithiformes. This change is generally associated with an increase in the density and complexity of the neurovascular network. Another evolutionary-developmental feature is the progressive loss of post-natal growth marks as of the non-ornithurine Euornithes, indicative of uninterrupted bone growth as observed in extant Neornithes. Our comparisons of the osteohistological patterns allow us to better determine how and when specific features typical observed in the avian crown group developed, associated with external and internal factors, and how they lead to what is commonly observed in extant Neornithes.  相似文献   

20.
In 47 dissected right and left hands of adults of both sexes, kept in a moist condition, significant practical-clinical investigations of the transitional zone between forearm and hand were undertaken. In particular it was sought to determine the characteristic sizes of the extensor retinaculum, the osteofibrous tunnels, the insertion tendons of the hand and finger extensor muscles, and their tendon sheaths. Together with the palmar carpal ligament, the 2 to 3 cm wide extensor retinaculum annularly surrounds the whole circumference of the carpus. It extends obliquely from radial-proximal to ulnar-distal and conducts the extensor tendons over the carpal articulations. According to recent studies, it is divided into a superficial and a deep fibrous layer. From the undermost surface, vertical and oblique septa run to the plane of the forearm and carpal bones. They separate the fibrous portion of the 6 tendinous compartments of the dorsum manus. In 8.5% of cases, an accessory and completely independent tunnel of the extensor pollicis brevis muscle exists in the material investigated, and in 2.2% of cases, there is an additional tunnel for the extensor carpi radialis muscle. Hence, one occasionally finds 8 separate osteofibrous gliding compartments for the extensor muscles in the dorsal hand region. The longest tunnel belongs, as a rule, to the extensor digiti minimi muscle, whilst the widest pertains to the extensor digitorum muscle. Within the tunnel and also proximal and distal to it, the extensor tendons are surrounded by synovial sheaths. Because of its wide encroachment on the dorsum of the hand, the insertion tendon of the extensor digiti minimi muscle possesses the longest tendon sheath, measuring 68.8 mm. The next longest sheath, that of the extensor pollicis longus muscle, which measures 56.2 mm, begins further proximal to the gap of the radiocarpal articulation. In 12.8% of cases, there are divided sheaths of the abductor pollicis longus and of the extensor pollicis brevis muscle. The tendon sheath of both extensor carpi radiales muscles is frequently divided into 2 compartments which, in 2/3 of cases, communicate. The compartment of the extensor carpi radialis brevis muscle, in 91.5% of cases, shares a window-like opening with the roof of the synovial vagina of the extensor pollicis longus muscle. The tendon sheath of the long extensor muscles of the fingers originates 5 mm proximal to the forearm border of the extensor retinaculum and has a communal recess. The IVth tendon sheath opens distally and splays out in a glove-like manner to some distal recesses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号