首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lennart Hansson 《Oecologia》1984,63(2):199-206
A cyclic Clethrionomys glareolus population from north Sweden was compared with a non-cyclic population from south Sweden regarding age structure, body weight, reproductive development and suppression, and sex ratios.The non-cyclic population, after years with winter breeding, was characterized by especially early and intense breeding in spring and many post-reproductive animals in autumn. Non-cyclic populations with no winter reproduction were similar to increase years in cyclic populations. In peak and especially in decline phases of cyclic populations reproduction decreased clearly below the level in non-cyclic populations. Animal weights varied insignificantly between years in the non-cyclic population but changed greatly in the cyclic population.A unifying hypothesis for explaining variations in animal quality between different populations is proposed: Maternal conditions related to food supply are assumed to affect body growth and sexual maturation of the young. Predictions from this hypotheses are outlined and compared with those from competing ideas.  相似文献   

2.
Setaria glauca (yellow foxtail), S. geniculata (knotroot foxtail), and S. faberii (giant foxtail) are important cosmopolitan weeds of temperate and tropical regions. Isozyme markers were used to investigate genetic diversity and population genetic structure in 94 accessions of yellow foxtail, 24 accessions of knotroot foxtail, and 51 accessions of giant foxtail, collected mainly from North America and Eurasia. Giant foxtail populations were nearly identical genetically, with only one population exhibiting isozyme polymorphism. Yellow and knotroot foxtail populations had low genetic diversity but marked population differentiation. Although the latter species are similar morphologically, they are readily distinguished electrophoretically, with Nei's genetic identity being 0.83. In both species, genetic divergence between accessions from Eurasia and North America was minimal. Populations from the native ranges had slightly greater genetic diversity than those from the respective introduced ranges. Yellow foxtail populations genetically clustered into Asian, European, and North American groups. Within North America, yellow foxtail populations from Iowa were genetically diverse whereas populations collected from other North American locations were nearly monomorphic for the same multilocus genotype. Knotroot foxtail populations in North America were genetically differentiated into northern and southern groups on either side of a line at ≈37° N latitude. No genetic patterning was evident in knotroot foxtail populations from Eurasia. In both yellow and knotroot foxtail, patterns of population genetic structure have been influenced by several factors, including genetic bottlenecks associated with founder events, genetic drift, and natural selection.  相似文献   

3.
Summary If food is in short supply, then provision of addition food should increase the density of Douglas squirrels. A squirrel population was supplied with extra food during the summers of 1977 and 1978 and winter of 1978–1979 in coastal coniferous forest at Maple Ridge, British Columbia. Food produced a 5-to 10-fold increase in squirrel density compared with control populations. Control densities generally varied from 3 to 10 squirrels per trapping area with the experimental population increasing to 65 animals during the winter feeding. This irruption was produced by immigration, more reproduction in females, and increased survival. After the food was withdrawn, the population declined to a level comparable with the controls. We conclude that Douglas squirrel populations fluctuate in accordance with the abundance of food. Territorial behavior may space individuals within populations of Tamiasciurus douglasii but to density levels determined by the available food supply.  相似文献   

4.
P. J. den Boer 《Oecologia》1991,86(4):484-491
Summary It is often claimed that the fluctuation of numbers in field populations is fundamentally different from random walks of densities, in that population size is kept between certain positive limits. To test this hypothesis patterns of fluctuation in field populations were compared with random walks of density of about the same duration. It was found that the boundaries (Log-Range) between which numbers fluctuate in field populations increase with time to about the same extent as in comparable random walks of density. Moreover, deviations of the trend of numbers over years (Average lnR) from zero trend in populations of 62 (carabid) species were just those expected for simulated random walk runs, with the median value of Var(lnR), and different values for mean population size that cover the possible range of survival times for these species. This means that the null hypothesis that in the field numbers would fluctuate as random walks of densities could not be rejected. Although it is not very probable that field populations fluctuate exactly like random walks of densities, random walk models appear to mimic the fluctuation patterns of field populations sufficiently closely to explain what happens in nature, and to deny the need for regulation. The same conclusion was drawn in earlier studies where statistical tests were applied to fluctuation patterns of field populations (Den Boer and Reddingius 1989; Den Boer 1990a). Random walks of densities do not exclude the possibility that local populations can persist for some centuries.Communication No. 435 of the Biological Station Wijster  相似文献   

5.
The management and recovery of large predator populations in areas where human persecution has driven them to ecological extinction requires a solid understanding of the effects of both predation and food limitation on prey populations. We used 11 yr of data on reported losses among 17.3 million free‐ranging sheep Ovis aries in the Norwegian farming industry to elucidate the relative roles of climate, vegetation characteristics, sheep densities, lamb body mass and densities of predators and alternative prey on the number of lambs and ewes lost on summer pastures. We first examined whether predator densities predicted autumn lamb body mass through possible impacts of predators on body growth (non‐lethal effects) but found no evidence for such effects in our study system. This might be due to weak anti‐predator behavioral responses in domesticated sheep. However, autumn lamb body mass was predicted by both sheep density and winter and spring weather conditions, probably through food availability. Losses of both lambs and ewes were positively and strongly related to the density of Eurasian lynx Lynx lynx, wolverine Gulo gulo and brown bear Ursus arctos. In addition, food availability and spring weather conditions were associated to losses of lambs, while precipitation in May predicted losses of ewes. There was little evidence for interaction effects of predator species on losses, suggesting that most of the effects of the predators were additive to each other. Given the strong effect of predator densities on sheep losses, we conclude that changing livestock husbandry practices towards a system that actively protects sheep and/or active management of predator densities may be necessary to reduce sheep losses where predators are recolonizing.  相似文献   

6.
Aim We reviewed 54 studies reporting population densities of wild boar (Sus scrofa) in western Eurasia in order to investigate the roles of vegetation productivity [fraction of photosynthetically active radiation (FPAR) index], winter harshness (mean January temperature) and presence/absence of wolves (Canis lupus) in shaping the biogeographical variation in population density of wild boar. Location We collected published data on the autumn–winter population density of wild boar (number of individuals km?2) in 54 locations in western Eurasia, from 1966 to 2003. Methods The mean January temperature, obtained from the World Climate data base ( http://www.worldclimate.com ), was taken as a measure of winter severity. We used monthly 4 × 4 km MODIS FPAR data sets covering January 2000 to June 2004 to calculate the vegetation productivity index. In addition, we collected literature data about the presence or absence of wolves from the study areas. Results In the geographical span of 37–60° N, the population densities of wild boar declined by three orders of magnitude, from 10 to 0.01 individuals km?2. The best multiple regression model (selected with the Akaike information criterion corrected for small samples) showed that mean January temperature and the vegetation productivity index were the most important factors explaining the biogeographical variation in population densities of wild boar. The impact of temperature was stronger than that of productivity. The presence of wolves had a weak limiting effect on population densities of wild boar at the biogeographical scale. Main conclusion We propose that winter harshness imposes density‐independent mortality on wild boar populations at higher latitudes. Competition for food in less productive regions may cause stronger density dependence in birth and death rates of wild boar populations. We expect that wild boar will respond to global warming by both an increase in local population densities and an expansion of their geographical range north and north‐eastwards.  相似文献   

7.
The population dynamics of two grasshoppers (Melanoplus femurrubrum and M. sanguinipes) were studied using experimental microcosms over 8 years at a Palouse prairie site in Montana. Grasshopper density, survival and reproduction in the experimental populations responded in a density-dependent fashion to natural and experimental changes in food availability for all grasshopper developmental stages, both within and between all years. We observed that field populations of the grasshoppers at the site exhibited density, survival and reproductive responses similar to the experimental populations over the period of the study. Because we could not identify any differences between the field and microcosm environments or the grasshopper individuals in them, we contend that field populations were ultimately limited by food within and between years. Density-dependent food limitation occurred for all age categories over the entire summer, because food abundance declined relative to grasshopper food requirements over the summer. Food limitation occurred between years, because in years with the lowest food abundance, the populations produced more hatchlings for the next year than could be supported by the highest observed food abundance. Finally, the observed annual changes in food abundance were correlated with the annual variation in weather (rainfall and temperature), which indicated that the long established relationship between grasshopper densities and weather conditions does not imply population limitation by density-independent processes.  相似文献   

8.
Daphnia lumholtzi has been very successful in colonizing North America since its appearance in Texas in 1990. Although previous studies have sought to link its success as an invasive species with various aspects of its population biology, there is little experimental data linking the invasion success of D. lumholtzi with its autecology, specifically its reproduction strategy. In this study we sought to link food quality and quantity to diapause in D. lumholtzi through a variation in phosphorus (P) content of algae, food quantity, and light level. We also assessed the effect of Daphnia peak population densities on reproductive rates and production of resting eggs. We found that when food is abundant, per capita ephippia production may be limited by P, but under food limitation conditions, there is no significant effect of food quality on ephippia production. Our results suggest that a combination of food quality/quantity and population density may work together to induce the production of resting eggs in this invasive species. Handling editor: S. Declerk  相似文献   

9.
Linking herbivore-induced defences to population dynamics   总被引:2,自引:0,他引:2  
1. Theoretical studies have shown that inducible defences have the potential to affect population stability and persistence in bi‐ and tritrophic food chains. Experimental studies on such effects of prey defence strategies on the dynamics of predator–prey systems are still rare. We performed replicated population dynamics experiments using the herbivorous rotifer Brachionus calyciflorus and four strains of closely related algae that show different defence responses to this herbivore. 2. We observed herbivore populations to fluctuate at a higher frequency when feeding on small undefended algae. During these fluctuations minimum rotifer densities remained sufficiently high to ensure population persistence in all the replicates. The initial growth of rotifer populations in this treatment coincided with a sharp drop in algal density. Such a suppression of algae by herbivores was not observed in the other treatments, where algae were larger due to induced or permanent defences. In these treatments we observed rotifer population densities to first rise and then decline. The herbivore went extinct in all replicates with large permanently defended algae. The frequency of herbivore extinctions was intermediate when algae had inducible defences. 3. A variety of alternative mechanisms could explain differential herbivore persistence in the different defence treatments. Our analysis showed the density and fraction of highly edible algal particles to better explain herbivore persistence and extinctions than total algal density, the fraction of highly inedible food particles or the accumulation of herbivore waste products or autotoxins. 4. We argue that the rotifers require a minimum fraction and density of edible food particles for maintenance and reproduction. We conjecture that induced defences in algae may thus favour larger zooplankton species such as Daphnia spp. that are less sensitive to shifts in their food size spectrum, relative to smaller zooplankton species, such as rotifers and in this way contributes to the structuring of planktonic communities.  相似文献   

10.
Setaria viridis is an important self-pollinating, cosmopolitan weed of temperate regions worldwide. Allozyme markers were used to investigate genetic diversity and structure in 168 accessions (including four S. italica) collected mainly from North America and Eurasia. Genetic diversity in green foxtail, and its population genetic structure, provided important clues about this weed's evolutionary history. Genetic diversity was low, with marked population differentiation: the percentage of polymorphic loci was 25% (0.95 criterion); mean number of alleles per locus was 1.86; mean panmictic heterozygosity was 0.07; and the coefficient of population genetic differentiation was 0.65. A common genotype occurred in 25 accessions distributed in six countries from both the Old World and New World, in a wide variety of ecological situations. Relatively little genetic divergence occurred between Eurasia and North America, with Nei's unbiased genetic identity between the two regions equaling 1.0. Populations from these two continents also had equivalent genetic diversity. Within North America, regional differentiation was indicated by northern and southern groups separated at 43.5° N latitude. No geographic pattern in genetic diversity was found within Eurasia. The size of the geographic range from which populations were sampled was not an accurate indicator of the extent of genetic diversity found among populations from that region. These results suggest that present patterning among green foxtail populations in North America is the consequence of multiple introductions into the New World followed by local adaptation and regional differentiation. Finally, S. italica and several green foxtail varieties did not differ isozymatically from typical forms of green foxtail. This supports the view that S. italica and S. viridis are conspecific, that the former (foxtail millet) is a domesticated form of the latter, and also questions the taxonomic validity of formally recognizing morphological varieties within green foxtail.  相似文献   

11.
Many populations, especially in insects, fluctuate in size, and periods of particularly low population size can have strong effects on genetic variation. Effects of demographic bottlenecks on genetic diversity of single populations are widely documented. Effects of bottlenecks on genetic structure among multiple interconnected populations are less studied, as are genetic changes across multiple cycles of demographic collapse and recovery. We take advantage of a long‐term data set comprising demographic, genetic and movement data from a network of populations of the butterfly, Parnassius smintheus, to examine the effects of fluctuating population size on spatial genetic structure. We build on a previous study that documented increased genetic differentiation and loss of spatial genetic patterns (isolation by distance and by intervening forest cover) after a network‐wide bottleneck event. Here, we show that genetic differentiation was reduced again and spatial patterns returned to the system extremely rapidly, within three years (i.e. generations). We also show that a second bottleneck had similar effects to the first, increasing differentiation and erasing spatial patterns. Thus, bottlenecks consistently drive random divergence of allele frequencies among populations in this system, but these effects are rapidly countered by gene flow during demographic recovery. Our results reveal a system in which the relative influence of genetic drift and gene flow continually shift as populations fluctuate in size, leading to cyclic changes in genetic structure. Our results also suggest caution in the interpretation of patterns of spatial genetic structure, and its association with landscape variables, when measured at only a single point in time.  相似文献   

12.
Sly  P. G.  Christie  W. J. 《Hydrobiologia》1992,235(1):321-352
The physical and chemical characteristics of the sediment-water interface greatly influence distributions of the bottom-feeding amphipod Pontoporeia hoyi which is a major component of the Great Lakes aquatic food-webs. Sediment-water interface samples from the Great Lakes indicate that Pontoporeia densities are positively correlated with sediment concentrations of organic carbon, particularly in the upper depth range of the species. Pontoporeia is not found in anoxic sediments. Growth rates and production of Pontoporeia are influenced by the quality of food supplies and there appears to be a seasonal response to the down-flux of plankton detritus. Comparisons of numerations and distribution patterns also revealed an apparent positive relationship between Pontoporeia and sediment-associated bacteria. Interlake comparisons of population densities provide no clear evidence of any large scale impact by contaminated sediment on this species. Depending upon the extent to which organic carbon (OC) is assimilated in the water column, bottom sediments may store and buffer the quantity of OC available to Pontoporeia. Thus, if the annual down-flux of OC remains generally constant, populations of Pontoporeia should also remain constant unless influenced by changes in predation intensity.Numerations of Pontoporeia revealed that populations of this amphipod are much larger in Lake Michigan than in Lake Ontario. We suggest that much of this difference can be accounted for by different forms of predator-prey interaction near the base of the benthic food-web. Commercial fisheries data tend to support this idea. We also speculate that differences in the concentration of dissolved silica may figure prominantly among factors that affect Pontoporeia population densities.Under proposed new taxonomy (Bousfield, 1989), Pontoporeia hoyi is now classified as Diporeia hoyi. However, for convenience, we have retained the commonly used genus Pontoporeia throughout this text.  相似文献   

13.
The Australasian burrowing isopod (Sphaeroma quoianum) has been introduced to numerous embayments along the Pacific coast of North America. In some bays, populations of S. quoianum can exceed tens of thousands of individuals m−3 and bioturbation by the isopods can exacerbate shoreline erosion. Within their native range, however, studies recognize S. quoianum primarily as a woodborer. We measured the distribution, prevalence, habitat use, density, and associated fauna of S. quoianum in two bays within the native range [Tamar estuary (Tamar), Tasmania and Port Phillip Bay (PPB), VIC, Australia] and in one bay where the isopods had been introduced (Coos Bay, OR, USA). Distribution, prevalence, and habitat use were determined from shoreline surveys. Densities and the associated fauna of S. quoianum were measured in three intertidal substrata (marsh bank, wood, and friable rock). In all embayments, S. quoianum occurred primarily between 5 and 30 salinity and 55−68% of sites harbored isopods. Habitat use varied between embayments. Distributional patterns suggest salinity is the primary factor that limits the establishment and spread of S. quoianum. Isopod densities in all substrata were greater in Coos Bay than in the Tamar or PPB, although only densities within marsh banks varied significantly. Similarities in the amount of habitat and food, and the burrow dwelling lifestyle of S. quoianum suggest habitat availability/quality, food levels, predation, and competition are not responsible for the large differences in density. Lack of parasites or disease in populations of S. quoianum introduced to Coos Bay could be responsible for the prolific densities observed.  相似文献   

14.
The role of food, weather and climate in limiting the abundance of animals   总被引:1,自引:0,他引:1  
More and more studies are demonstrating that populations of animals ‐ from herbivores to top predators, vertebrates and invertebrates ‐ are limited by their food, and that the availability of this food is dictated by the weather. Satellite monitoring is revealing how cyclic and quasi‐cyclic climatic patterns, like the El Niño Southern Oscillation and the North Atlantic Oscillation, are driving and synchronising these weather‐driven changes in the supplies of food. Changes in the amount of food available operate to limit the abundance of populations largely through their influence on the survival of the very young: the Achilles heel of all populations. Any individual organism struggles to use whatever resources it can get from a mostly inhospitable environment to maximise the proliferation of its genes. Each level of a food chain is thus dependent upon, and pressing hard against the limits set by the one below. The resulting intra‐ and inter‐specific interactions produce a multitude of complex outcomes, that significantly influence the dynamics of populations, but do not determine their ultimate size. There is no density‐dependent regulation of abundance. Intra‐specific competition does not determine the size of populations, it only decides which few individuals gain access to the limited food. Nor do predators regulate their prey. They, too, are limited by their food, and the abundance and quality of food is dictated by the weather.  相似文献   

15.
Voles can reach high densities with multiannual population fluctuations of large amplitude, and they are at the base of predator communities in Northern Eurasia and Northern America. This status places them at the heart of management conflicts wherein crop protection and health concerns are often raised against conservation issues. Here, a 20‐year survey describes the effects of large variations in grassland vole populations on the densities and the daily theoretical food intakes (TFI) of vole predators based on roadside counts. Our results show how the predator community responded to prey variations of large amplitude and how it reorganized with the increase in a dominant predator, here the red fox, which likely negatively impacted hare, European wildcat, and domestic cat populations. This population increase did not lead to an increase in the average number of predators present in the study area, suggesting compensations among resident species due to intraguild predation or competition. Large variations in vole predator number could be clearly attributed to the temporary increase in the populations of mobile birds of prey in response to grassland vole outbreaks. Our study provides empirical support for more timely and better focused actions in wildlife management and vole population control, and it supports an evidence‐based and constructive dialogue about management targets and options between all stakeholders of such socio‐ecosystems.

A 20‐year survey describes the effects of large variations in grassland vole populations on the densities and the daily theoretical food intakes of a vole predator community based on roadside counts. Our results show how the predator community responds to prey variations of large amplitude and how it reorganized with the increase of the red fox, which likely negatively impacted hare, European wildcat, and domestic cat populations.  相似文献   

16.
Population fluctuations can be affected by both extrinsic (e.g. weather patterns, food availability) and intrinsic (e.g. life‐history) factors. A key life‐history tradeoff is the production of offspring size versus number, ranging from many small offspring to few large offspring. Models show that this life‐history tradeoff in offspring size and number, through maturation time, can have significant impacts on population dynamics. However, few manipulative experiments have been conducted that can isolate life‐history effects from impacts of extrinsic factors in consumer–resource systems. We experimentally tested the effect of an offspring size–number tradeoff on population stability and food availability in a consumer–resource system. Using Daphnia pulex, we created a shift from many, small offspring being produced to fewer, larger offspring. Two sets of experiments were performed to examine the interaction of an extrinsic factor (light levels) and intrinsic population structure on dynamics, and we controlled for the ingestion pressure on algal prey at the time of the manipulation. We predicted that the tradeoff would impact internal consumer population characteristics, including biasing the stage structure towards adults, increasing adult size, and increasing average population‐level reproduction. This adult‐dominated stage structure was predicted to then lead to instability and a low quantity–high quality food state. Under all light levels, the manipulated populations became dominated by large adults. Contrary to predictions, the amplitudes of fluctuations in Daphnia biomass were lower in populations shifted to few–large offspring, representing higher stability in these populations. Furthermore, in high light conditions, a stable low Daphnia – high algae biomass (low food quality) state was observed in few–large offspring treatments but not in control (many–small offspring) treatments. Our results show a strong link between light levels as an extrinsic factor and the life‐history tradeoff of consumer offspring size versus number that impacts consumer–resource population dynamics through feedbacks with resource quality.  相似文献   

17.
Characterizing the current population structure of potentially invasive species provides a critical context for identifying source populations and for understanding why invasions are successful. Non‐native populations inevitably lose genetic diversity during initial colonization events, but subsequent admixture among independently introduced lineages may increase both genetic variation and adaptive potential. Here we characterize the population structure of the gypsy moth (Lymantria dispar Linnaeus), one of the world's most destructive forest pests. Native to Eurasia and recently introduced to North America, the current distribution of gypsy moth includes forests throughout the temperate region of the northern hemisphere. Analyses of microsatellite loci and mitochondrial DNA sequences for 1738 individuals identified four genetic clusters within L. dispar. Three of these clusters correspond to the three named subspecies; North American populations represent a distinct fourth cluster, presumably a consequence of the population bottleneck and allele frequency change that accompanied introduction. We find no evidence that admixture has been an important catalyst of the successful invasion and range expansion in North America. However, we do find evidence of ongoing hybridization between subspecies and increased genetic variation in gypsy moth populations from Eastern Asia, populations that now pose a threat of further human‐mediated introductions. Finally, we show that current patterns of variation can be explained in terms of climate and habitat changes during the Pleistocene, a time when temperate forests expanded and contracted. Deeply diverged matrilines in Europe imply that gypsy moths have been there for a long time and are not recent arrivals from Asia.  相似文献   

18.
Comparisons of intraspecific spatial synchrony across multiple epidemic insect species can be useful for generating hypotheses about major determinants of population patterns at larger scales. The present study compares patterns of spatial synchrony in outbreaks of six epidemic bark beetle species in North America and Europe. Spatial synchrony among populations of the Eurasian spruce bark beetle Ips typographus was significantly higher than for the other bark beetle species. The spatial synchrony observed in epidemic bark beetles was also compared with previously published patterns of synchrony in outbreaks of defoliating forest Lepidoptera, revealing a marked difference between these two major insect groups. The bark beetles exhibited a generally lower degree of spatial synchrony than the Lepidoptera, possibly because bark beetles are synchronized by different weather variables that are acting on a smaller scale than those affecting the Lepidoptera, or because inherent differences in their dynamics leads to more cyclic oscillations and more synchronous spatial dynamics in the Lepidoptera.  相似文献   

19.
Aims Our study aimed to characterize the dispersal dynamics and population genetic structure of the introduced golden mussel Limnoperna fortunei throughout its invaded range in South America and to determine how different dispersal methods, that is, human‐mediated dispersal and downstream natural dispersal, contribute to genetic variation among populations. Location Paraná–Uruguay–Río de la Plata watershed in Argentina, Brazil, Paraguay and Uruguay. Methods We performed genetic analyses based on a comprehensive sampling strategy encompassing 22 populations (N = 712) throughout the invaded range in South America, using the mitochondrial cytochrome c oxidase subunit I (COI) gene and eight polymorphic nuclear microsatellites. We employed both population genetics and phylogenetic analyses to clarify the dispersal dynamics and population genetic structure. Results We detected relatively high genetic differentiation between populations (FST = ?0.041 to 0.111 for COI, ?0.060 to 0.108 for microsatellites) at both fine and large geographical scales. Bayesian clustering and three‐dimensional factorial correspondence analyses consistently revealed two genetically distinct clusters, highlighting genetic discontinuities in the invaded range. Results of all genetic analyses suggest ship‐mediated ‘jump’ dispersal as the dominant mode of spread of golden mussels in South America, while downstream natural dispersal has had limited effects on contemporary genetic patterns. Main conclusions Our study provides new evidence that post‐establishment dispersal dynamics and genetic patterns vary across geographical scales. While ship‐mediated ‘jump’ dispersal dominates post‐establishment spread of golden mussels in South America, once colonies become established in upstream locations, larvae produced may be advected downstream to infill patchy distributions. Moreover, genetic structuring at fine geographical scales, especially within the same drainages, suggests a further detailed understanding of dynamics of larval dispersal and settlement in different water systems. Knowledge of the mechanisms by which post‐establishment spread occurs can, in some cases, be used to limit dispersal of golden mussels and other introduced species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号