首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native and exotic plants can influence one another's fecundity through their influence on shared pollinators. Specifically, invasion may alter abundance and composition of local floral resources, affecting pollinator visitation and ultimately causing seedset of natives in more‐invaded and less‐invaded floral neighborhoods to differ. Such pollinator‐mediated effects of exotic plants on natives are common, but native and exotic plants often share multiple pollinators, which may differ in their responses to altered floral neighborhoods. We quantified pollinator‐mediated interactions between three common forbs of western Washington prairies (native Microseris laciniata and Eriophyllum lanatum and European Hypochaeris radicata) in three floral neighborhoods: 1) high native and low exotic floral density, 2) high exotic floral density and low native density, and 3) experimentally manipulated low exotic floral density. Pollinator visitation rates varied by floral neighborhood, plant species identity, and their interaction for all three plant species. Similarly, pollinator functional groups (eusocial bees, solitary bees, and syrphid flies) contributed differing proportions of total visitation to each species depending upon neighborhood context. Consequently, in exotic neighborhoods H. radicata competed with native M. laciniata, reducing seed set, while simultaneously facilitating visitation and seed set for native E. lanatum. Seed set of H. radicata was also highest in exotic neighborhoods (with high densities of conspecifics), raising the possibility of a positive feedback between exotic abundance and success. Our results suggest that the outcome of indirect interactions between native and exotic plants depends on the density and the composition of the floral neighborhood and of the pollinator fauna, and on context‐dependent pollinator foraging.  相似文献   

2.
Plant reproductive success is usually positively related to conspecific floral density, but neutral or negative effects of floral density on reproduction have also been reported. Differences in the relationship between reproduction and floral density largely originate from a trade‐off between increasing attractiveness versus increasing competition for pollinators at high floral densities. Although floral densities strongly vary in the understory of tropical forests, for instance, due to variation in light availability, little is known about the density dependence of reproduction in tropical understory plants. We used path analyses to disentangle direct and indirect effects of canopy openness and floral density on fruit set and analyzed the relationship between pollen load and floral density for two Neotropical understory plants, Heliconia metallica and Besleria melancholica. In both species, fruit set was not directly related to canopy openness, but decreased with increasing floral density. In H. metallica, canopy openness had an indirect negative effect on reproduction mediated by its effects on floral density. Effects of floral density on pollen loads were species‐specific. In B. melancholica, pollen loads linearly decreased with increasing floral density, indicating competition for pollinators at high densities. In H. metallica, pollen loads were reduced at both low and high densities, indicating an interplay of facilitative and competitive effects of floral density on pollen deposition. In contrast to other studies, we found negative density dependence of reproduction in both understory species. Negative effects of floral density on reproduction appear to be related to pollinator‐mediated effects on reproduction rather than to variation in abiotic conditions.  相似文献   

3.
Eritrichium nanum 《Flora》2004,199(5):398-408
In 14 permanent plots at four distant sites in the European Alps life tables, cohorts and recruitment of Eritrichium nanum were studied during a period of 5 resp. 6 years. The germination rates were tested in the Botanical Institute of the University of Basel and besides the life tables of the plots at natural habitats we followed the early stages of development in pot cultures at the University Botanical Garden in Basel. Most of the seedlings of E. nanum emerged in spring, in the pot cultures as well as under natural conditions, a behavior which confirms general findings. But the germination rates (0–30%) were markedly low. The pot cultures show that some seeds are after 4 or 5 years still viable. Premature flowering in the second summer is a rather common behavior of E. nanum seedlings, which happened in all the cohorts observed during five years, partly up to 20% of the total of living plants in the corresponding plots. It is evident that life expectancy of E. nanum plants increase rapidly with rising size, to such a degree that cushions of only 10–20 cm2 surface have a survival chance of more than 70%, those of 20–30 cm2 even of more than 95% during a period of 5 years. But it has to be mentioned that juvenile plants are not growing parallel to their lifetime, many of them persist during several years in the size categories I/II (0–5 cm2), while others suddenly arise from category I to III (–10 cm2) or even IV (–20 cm2), what is mostly caused by joining, a specific type of safe site strategy. Though not obligatory, juvenile plants growing close together, often add their sizes to form one larger cushion, which was found to be particularly advantageous for recruitment. This is obviously a primary strategy of E. nanum and favors, especially on bare ground, the survival of its descendants which was found higher than expected (average of 26% after 5 years’ growth at natural habitats). Focusing on the whole life cycle of E. nanum, the present studies show constraints in pollination, a small seed production and low germination rates to be well compensated by the high survivorship and successful recruitment of the seedlings.  相似文献   

4.
Although the evolution and diversification of flowers is often attributed to pollinator-mediated selection, interactions between co-occurring plant species can alter patterns of selection mediated by pollinators and other agents. The extent to which both floral density and congeneric species richness affect patterns of net and pollinator-mediated selection on multiple co-occurring species in a community is unknown and is likely to depend on whether co-occurring plants experience competition or facilitation for reproduction. We conducted an observational study of selection on four species of Clarkia (Onagraceae) and tested for pollinator-mediated selection on two Clarkia species in communities differing in congeneric species richness and local floral density. When selection varied with community context, selection was generally stronger in communities with fewer species, where local conspecific floral density was higher, and where local heterospecific floral density was lower. These patterns suggest that intraspecific competition at high densities and interspecific competition at low densities may affect the evolution of floral traits. However, selection on floral traits was not pollinator mediated in Clarkia cylindrica or Clarkia xantiana, despite variation in pollinator visitation and the extent of pollen limitation across communities for C. cylindrica. As such, interactions between co-occurring species may alter patterns of selection mediated by abiotic agents of selection.  相似文献   

5.
6.
Montgomery BR  Rathcke BJ 《Oecologia》2012,168(2):449-458
Plant species vary greatly in the degree to which floral morphology restricts access to the flower interior. Restrictiveness of flower corollas may influence heterospecific pollen receipt, but the impact of floral morphology on heterospecific pollen transfer has received little attention. We characterized patterns of pollinator visitation and quantities of conspecific and heterospecific pollen receipt for 29 species with a range of floral morphologies in a prairie community dominated by the introduced plant Euphorbia esula (leafy spurge) which has an unrestrictive morphology. Pollinator overlap was significantly greater between Euphorbia and other unrestrictive flowers than restrictive flowers. Compared to flowers with restrictive morphologies, unrestrictive flowers received significantly more Euphorbia pollen, more heterospecific pollen from other sources, and a greater diversity of pollen species, but not more conspecific pollen. However, stigmatic surface area was significantly larger for flowers with unrestrictive morphologies, and the density of Euphorbia and other heterospecific pollen per stigmatic area did not significantly differ between flower types. These findings suggest that the smaller stigma size in restrictive flowers partly accounts for their decreased heterospecific pollen receipt, but that restrictiveness also allows species to increase the purity of pollen loads they receive. Given that restrictive flowers receive fewer heterospecific pollen grains but at a higher density, the effect of restrictiveness on fecundity depends on whether absolute quantity or density of heterospecific pollen affects fecundity more. Our results also indicate that abundant neighbors are not necessarily important heterospecific pollen sources since Euphorbia pollen was rarely abundant on heterospecifics.  相似文献   

7.
Plant–insect interactions often are important for plant reproduction, but the outcome of these interactions may vary with environmental context. Pollinating seed predators have positive and negative effects on host plant reproduction, and the interaction outcome is predicted to vary with density or abundance of the partners. We studied the interaction between Silene stellata, an herbaceous perennial, and Hadena ectypa, its specialized pollinating seed predator. Silene stellata is only facultatively dependent upon H. ectypa for pollination because other nocturnal moth co‐pollinators are equally effective at pollen transfer. We hypothesized that for plants without conspecific neighbors, H. ectypa would have higher visitation rates compared to co‐pollinators, and the plants would experience lower levels of H. ectypa pollen deposition. We predicted similar oviposition throughout the study site but greater H. ectypa predation in the area without conspecific neighbors compared to plants embedded in a naturally high density area. We found that H. ectypa had consistently higher visitation than moth co‐pollinators in all host plant contexts. However, H. ectypa pollinator importance declined in areas with low conspecific density because of reduced pollen deposition, resulting in lower seed set. Conversely, oviposition was similar across the study site independent of host plant density. Greater likelihood of very high fruit predation combined with lower pollination by H. ectypa resulted in reduced S. stellata female reproductive success in areas with low conspecific density. Our results demonstrate local context dependency of the outcomes of pollinating seed predator interactions with conspecific host plant density within a population.  相似文献   

8.
 Flower development, pollination and breeding system of the high alpine cushion plant, Eritrichium nanum (Boraginaceae), were investigated in nine populations from the European Alps at altitudes of 2700 m–3200 m. Peak flowering period lasts longer than a month, from mid-June to the end of July. In contrast to statements in the literature that flowers are protogynous and nutlets remain in their calyx until spring we found a distinct protandry and nutlets being dispersed before mid-September. Various insects from 12 families, but mostly Diptera, frequently visited E. nanum flowers, with flies from the families Anthomyiidae and Muscidae being the predominant visitors. Under optimal conditions (max. solar radiation, min. wind force), visitation rates of 200 simultaneously observed flowers reached 32.5–46.7 insects per hour, i.e. 0.16–0.24 insects per flower per hour. However, the commonly observed Anthomyiidae and Muscidae clearly preferred the white-yellowish flowers of Saxifraga exarata and Saxifraga bryoides which are abundant at E. nanum sites and which are certainly also pollinated by species of these two fly families. The flowers of these Saxifraga species offer plenty of nectar and may compete for pollinators with E. nanum, when they are flowering in its proximity. However, various other insects like Pontia callidice and Psodos sp. (Lepidoptera) as well as Andrena sp. (Hymenoptera) and especially Eristalis tenax and closely related hoverflies showed a higher degree of flower constancy to E. nanum, often flying from a blue Eritrichium cushion to the next and hence causing outcrossing. The five fornices of E. nanum flowers which obstruct the tube containing stamens and nectar, are a feature which differs distinctly from the syndrome of fly-pollinated flowers with easily accessible nectar. Consequently pollination by flies in E. nanum seems to be caused mainly by the unfavorable ecological conditions at high altitudes, where flies are the most frequent insects. Bagging experiments showed that outcrossing and geitonogamy are the prevailing pollination modes, and autogamy, although possible, plays only a minor role. Received February 13, 2001 Accepted November 23, 2001  相似文献   

9.
Mating opportunities, pollination intensity, and pollen dispersal ability may vary with variation in floral traits such as color, size, and shape. Where these traits are selected by pollinators for enhanced elaboration, they should evolve toward the equilibrium between selection for further elaboration and selection against this through reduced fecundity or vitality. Here we show that pollinator-borne fungal diseases of plants may be a factor influencing the position of this equilibrium. Populations of the rock pink, Dianthus silvester often contain individuals infected with the anther smut fungus Microbotryum violaceum (= Ustilago violacea). In a naturally infected population in the Alps of eastern Switzerland we investigated how intrapopulation variation in flower size and nectar rewards influenced spore deposition and how floral traits varied with disease status. We found that spore deposition increased with increasing petal size, suggesting that large-flowered plants were at a greater risk of disease. Spore deposition was also higher for plants growing in patches with many or a high proportion of diseased neighbors. Multiple regression analyses showed that petal size or nectar reward influenced spore deposition when the effects of neighborhood disease abundance were controlled statistically. In sequential analyses, after removing the effects of disease density or frequency and plant gender, petal length explained significant variation in spore deposition. Diseased plants had reduced female reproductive organs, but calyx size was intermediate between that of healthy perfect and female flowers of this gynodioecious-gynomonoecious species, and diseased plants bore flowers with the largest petals. This may reflect a symptom of this disease or the cause, if larger-flowered plants are more likely to become infected. We conclude that investment to pollinator attraction may bring an enhanced risk of contracting this sterilizing pollinator-borne disease, so natural selection by the fungus M. violaceum acts to lower attractiveness to pollinators.  相似文献   

10.
Intra- and interspecific density dependence has profound consequences for plant population and community dynamics. In long-lived plants, however, lifetime patterns and mechanisms of density dependence are difficult to study. Here, we examine effects of intraspecific and community density on the lifetime fecundity of two long-lived shrub species from South African Fynbos: Protea repens (animal-pollinated, hermaphroditic) and Leucadendron rubrum (wind-pollinated, dioecious). Both species are serotinous, retaining seeds in cones until fire kills the mother plant. We measured lifetime fecundity as the product of cone number, proportion of cones that are not damaged by predation and seed set (fertile seeds per intact cone). Intraspecific and community densities were quantified by counting individuals of target species and all Proteaceae in small- and large-scale neighbourhoods (10 m and 50 m radius) around each focal individual. Additionally, we determined the age and size of focal individuals. We found that lifetime fecundity of the wind-pollinated L. rubrum is density independent. In contrast, the lifetime fecundity of the animal-pollinated P. repens increases with large-scale intraspecific density and shows a hump-shaped relationship to large-scale community density. Community density has a hump-shaped effect on seed set (probably through partial absence of generalized pollinators at low and competition for pollinators at high densities) and negatively affects cone number per individual. For both species, plant age decreases seed set while increasing lifetime fecundity. The qualitative differences in the density dependence of lifetime fecundity may arise from differences between animal and wind pollination. In particular, interactions with generalized animal pollinators may cause community-level Allee effects with profound consequences for the future dynamics of long-lived plant populations and communities.  相似文献   

11.
In natural environments, plants frequently interact with both heterospecific and conspecific neighbors. The intensity of belowground plant interaction with neighboring species commonly varies with the availability of soil nutrients in the habitats. According to classical ecological theory, competition between conspecific neighbors may be more severe than competition between unrelated species due to the similar nutrient requirements of close relatives, especially when nutrients are scarce in the habitat. However, many recent studies have shown the opposite pattern, and suggested an alternative mechanism based on species recognition. Taking Zoysia sinica as the focal species, we conducted a controlled experiment to test the results of intraspecific and interspecific interactions among three clonal species Zoysia sinica, Zoysia japonica and Alternanthera philoxeroides, which represent a conspecific, a close relative and a distant relative of the focal species, respectively, and at different root treatments (no separation NS, clone separation CS and ramet separation RS) and two nutrient levels. The results showed that Z. sinica recognized conspecific plants in the NS and CS treatments, and did not show above or belowground competition with these. The performance of the focal plant (Z. sinica) was better when it was grown with a conspecific neighbor as compared to all other types of neighbors. In all root separation treatments, the competition was more intense when Z. sinica grew with a close relative (Z. japonica) than when growing with a distant relative (A. philoxeroides). Generally, competition between plants was more intense at the high nutrient level than at the low nutrient level, suggesting that both soil nutrients and a species recognition mechanism play a significant role for the intra‐ and interspecific interaction and fitness of these three neighboring clonal species.  相似文献   

12.
Pollinators represent an important intermediary by which different plant species can influence each other’s reproductive fitness. Floral neighbors can modify the quantity of pollinator visits to a focal species but may also influence the composition of visitor assemblages that plants receive leading to potential changes in the average effectiveness of floral visits. We explored how the heterospecific floral neighborhood (abundance of native and non-native heterospecific plants within 2 m × 2 m) affects pollinator visitation and composition of pollinator assemblages for a native plant, Phacelia parryi. The relative effectiveness of different insect visitors was also assessed to interpret the potential effects on plant fitness of shifts in pollinator assemblage composition. Although the common non-native Brassica nigra did not have a significant effect on overall pollinator visitation rate to P. parryi, the proportion of flower visits that were made by native pollinators increased with increasing abundance of heterospecific plant species in the floral neighborhood other than B. nigra. Furthermore, native pollinators deposited twice as many P. parryi pollen grains per visit as did the nonnative Apis mellifera, and visits by native bees also resulted in more seeds than visits by A. mellifera. These results indicate that the floral neighborhood can influence the composition of pollinator assemblages that visit a native plant and that changes in local flower communities have the potential to affect plant reproductive success through shifts in these assemblages towards less effective pollinators.  相似文献   

13.
W. E. Kunin 《Oecologia》1992,91(1):129-133
Summary One possible consequence of low population density, particularly in self-incompatible plants, is reproductive failure. I surveyed seed set per flower in two populations of the self-incompatible annual Diplotaxis erucoides (Brassicaceae) in Jerusalem, Israel. Widely spaced plants had lower fruit set and fewer seeds per filled silique than did plants growing close to conspecific neighbors. Such density-dependent reproductive success could help explain the maintanence of spatial patchiness in plant populations, and could also have implications for population dynamics of rare species.  相似文献   

14.
Variation in within-population floral density can affect interactions between plants and pollinators, resulting in variable pollen export for plants. We investigated the effects of conspecific and heterospecific floral densities on pollination success both of two related, self-compatible, nectar-rewarding orchid species in Ireland, Spiranthes romanzoffiana (rare and listed as endangered) and its congener, S. spiralis (more abundant and not of conservation concern). Floral densities, insect visitation rates, and orchid pollen transport were recorded in multiple quadrats in four populations of both orchid species over their flowering season. We found that conspecific and heterospecific co-flowering plant density affected pollination in both orchid species. For S. romanzoffiana, higher heterospecific density increased pollen removal. For S. spiralis, higher conspecific visitation increased pollen removal and increased heterospecific density decreased pollen deposition. In addition, increased conspecific density increased pollen deposition in both species. This study shows that plants may interact to facilitate or compete for different components of the pollination process, namely; pollinator attraction, pollen removal and deposition. Such interactions have immediate consequences for endangered plant species, as increases in both conspecific and heterospecific coflowering density may ameliorate the negative effects of rarity on pollination, hence overall reproductive success.  相似文献   

15.
Fruit set is pollen‐limited in the self‐incompatible tree Heterophragma quadriloculare (Bignoniaceae), pollinated by long‐distance flying carpenter bees, and in the self‐compatible shrub Lasiosiphon eriocephalus (Thymdeaceae), pollinated by weak‐flying, sedentary beetles. We studied a single H. quadriloculare population over high and low flowering years and found no difference in bee visitation rates between these years. For H. quadriloculare, neighborhood floral display did not make a significant contribution to reproductive success. We investigated dense and sparse L. eriocephalus populations in the same year. In the low density L. eriocephalus population, individual floral displays were higher than in the dense population, yet reproductive success was low, indicating that plant isolation was a major factor influencing fruit set. This result was due to the extremely low number of beetles per plant and per flower in this population. In the dense L. eriocephalus population, although the displays of individual neighbors were smaller and plants were closer, neighborhood floral display did not contribute significantly to reproductive success, whereas the effect of individual floral display was ambiguous. Species with self‐incompatible rather than self‐compatible breeding systems are expected to experience neighborhood effects on reproductive success; however, at the spatial scale and floral display levels of plants in this study, only individual floral display affected fruit set in H. quadriloculare, whereas neither individual nor neighborhood display influenced fruit set in L. eriocephalus. Therefore, pollinator type, pollinator behavior, and plant and population isolation, rather than breeding system alone, will determine if neighborhood floral display affects fruit set.  相似文献   

16.
John L. Maron 《Oikos》2001,92(1):178-186
High mortality of plants growing in dense monospecific stands (i.e. self-thinning) usually results from intense intraspecific competition. However, inconspicuous below-ground insect herbivory might be a potent but overlooked source of mortality within dense stands of plants, particularly if crowding limits a plant's ability to compensate for herbivore damage. Here I ask how high conspecific density influences a plant's ability to cope with heavy below-ground insect herbivory.
I manipulated conspecific density and exposure to an abundant root-borer, the ghost moth ( Hepialus californicus ), and examined the impacts on the fecundity, growth, and survival of bush lupine ( Lupinus arboreus ), a fast-growing shrub that grows in dense monospecific stands in coastal grasslands. Both herbivory and intraspecific competition affected seed production, size, and mortality of bush lupine over the two years of the experiment. Plants consistently produced fewer seeds when growing at high versus low density and ghost moth herbivory also significantly reduced seed production. The negative effects of herbivory on plant fecundity were similar, regardless of plant density. In contrast, plant survival was affected by both competition, herbivory, and the interaction of these factors. In high density plots, plant survival was uniformly low (averaging 0.45–0.50); plants exposed to herbivores died from heavy herbivory, and plants protected from herbivores died due to intense intraspecific competition that compensated for losses due to herbivory. In low density plots, ghost moth herbivory similarly reduced lupine survival, from an average survival probability of 0.94 in plots protected from these herbivores to 0.55 in plots exposed to herbivory. Thus, results show that regardless of plant density, below-ground herbivory can be a potent source of mortality.  相似文献   

17.
Understory herbs are an essential part of tropical rain forests, but little is known about factors limiting their reproduction. Many of these herbs are clonal, patchily distributed, and produce large floral displays of nectar‐rich 1‐d flowers to attract hummingbird pollinators that may transport pollen over long distances. The aim of this study was to investigate the effects of clonality, cross‐proximity, and patchy distribution on the reproduction of the hummingbird‐pollinated Amazonian herb Heliconia metallica. We experimentally pollinated flowers within populations with self‐pollen and with pollen of different diversity, crossed flowers between populations, and added supplemental pollen to ramets growing solitarily or in conspecific patches. Only flowers pollinated early in the morning produced seeds. Selfed flowers produced seeds, but seed number and mass were strongly reduced, suggesting partial sterility and inbreeding depression after selfing. Because of pollen competition, flowers produced more seeds after crosses with several than with single donor plants. Crosses between populations mostly resulted in lower seed production than those within populations, suggesting outbreeding depression. Ramets in patches produced fewer seeds than solitary ramets and were more pollen‐limited, possibly due to geitonogamy and biparental inbreeding in patches. We conclude that high rates of geitonogamy due to clonality and pollen limitation due to the short receptivity of flowers and patchy distribution constrain the reproduction of this clonal herb. Even in unfragmented rain forests with highly mobile pollinators, outbreeding depression may be a widespread phenomenon in plant reproduction.  相似文献   

18.
Feldman TS 《Oecologia》2008,156(4):807-817
Plants may experience reduced reproductive success at low densities, due to lower numbers of pollinator visits or reduced visit quality. Co-occurring plant species that share pollinators have the potential to facilitate pollination by either increasing numbers of pollinator visits or increasing the quality of visits, but also have the potential to reduce plant reproductive success through competition for pollination. I used a field experiment with a common distylous perennial (Piriqueta caroliniana) in the presence and absence of a co-flowering species (Coreopsis leavenworthii) in plots with one of four different distances between conspecific plants. I found strong negative effects of increasing interplant distance (related to conspecific density) on several components of P. caroliniana reproductive success: pollinator visits to plants per plot visit, visits received by individual plants, conspecific pollen grains on stigmas, outcross pollen grains on stigmas, and probability of fruit production. Although P. caroliniana and C. leavenworthii share pollinators, the co-flowering species did not affect visitation, pollen receipt or reproductive effort in P. caroliniana. Pollinators moved very infrequently between species in this experiment, so floral constancy might explain the lack of effect of the co-flowering species on P. caroliniana reproductive success at low densities. In co-occurring self-incompatible plants with floral rewards, reproductive success at low density may depend more on conspecific densities than on the presence of other species.  相似文献   

19.
The responses of animal pollinators to the spatially heterogeneous distribution of floral resources are important for plant reproduction, especially in species‐rich plant communities. We explore how responses of pollinators to floral resources varied across multiple spatial scales and studied the responses of two nectarivorous bird species (Cape sugarbird Promerops cafer, orange‐breasted sunbird Anthobaphes violacea) to resource distributions provided by communities of co‐flowering Protea species (Proteaceae) in South African fynbos. We used highly resolved maps of about 125 000 Protea plants at 27 sites and estimated the seasonal dynamics of standing crop of nectar sugar for each plant to describe the spatiotemporal distribution of floral resources. We recorded avian population sizes and the rates of bird visits to > 1300 focal plants to assess the responses of nectarivorous birds to floral resources at different spatial scales. The population sizes of the two bird species responded positively to the amount of sugar resources at the site scale. Within sites, the effects of floral resources on pollinator visits to plants varied across scales and depended on the resources provided by individual plants. At large scales (radii > 25 m around focal plants), high sugar density decreased per‐plant visitation rates, i.e. plants competed for animal pollinators. At small scales (radii < 5 m around focal plants), we observed either competition or facilitation for pollinators between plants, depending on the sugar amount offered by individual focal plants. In plants with copious sugar, per‐plant visitation rates increased with increasing local sugar density, but visitation rates decreased in plants with little sugar. Our study underlines the importance of scale‐dependent responses of pollinators to floral resources and reveals that pollinators’ responses depend on the interplay between individual floral resources and local resource neighbourhood.  相似文献   

20.
Plant density varies naturally, from isolated plants to clumped individuals, and this can influence pollinator foraging behaviour and plant reproductive success. In addition, the effect of conspecific density on reproduction may depend on the pollination system, and deceptive species differ from rewarding ones in this regard, a high density being often associated with low fruit set in deceptive plants. In our study, we aimed to determine how local conspecific density and floral display size (i.e. number of flowers per plant) affect fruit set in a deceptive orchid (Orchis militaris) through changes in pollinator visitation. We measured fruit set in a natural population and recorded pollinator abundance and foraging behaviour within plots of different O. militaris densities. Detailed data were recorded for the most abundant potential pollinators of O. militaris, i.e. solitary bees. Floral display size was negatively correlated to fruit set in medium‐density plots, but uncorrelated in low‐ and high‐density plots. Plot density had no effect on solitary bee abundance and visitation, which may be due to low pollinator abundance within the study site. The proportion of visited flowers per inflorescence was negatively influenced by floral display size, which is in line with previous studies. In addition, solitary bees spent decreasing time in successive flowers within an inflorescence, and the time spent per flower was negatively affected by ambient temperature. Our results suggest that pollinator behaviour during visitation is poorly linked to pollen deposition and reproductive success in O. militaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号