首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A unifying feature of mammalian and insect olfactory systems is that olfactory sensory neurons (OSNs) expressing the same unique odorant-receptor gene converge onto the same glomeruli in the brain [1-7]. Most odorants activate a combination of receptors and thus distinct patterns of glomeruli, forming a proposed combinatorial spatial code that could support discrimination between a large number of odorants [8-11]. OSNs also exhibit odor-evoked responses with complex temporal dynamics [11], but the contribution of this activity to behavioral odor discrimination has received little attention [12]. Here, we investigated the importance of spatial encoding in the relatively simple Drosophila antennal lobe. We show that Drosophila can learn to discriminate between two odorants with one functional class of Or83b-expressing OSNs. Furthermore, these flies encode one odorant from a mixture and cross-adapt to odorants that activate the relevant OSN class, demonstrating that they discriminate odorants by using the same OSNs. Lastly, flies with a single class of Or83b-expressing OSNs recognize a specific odorant across a range of concentration, indicating that they encode odorant identity. Therefore, flies can distinguish odorants without discrete spatial codes in the antennal lobe, implying an important role for odorant-evoked temporal dynamics in behavioral odorant discrimination.  相似文献   

2.
《Fly》2013,7(1):50-61
From the moment an adult fruit fly ecloses, its primary objective in life is to disperse and locate the source of an attractive food odor upon which to feed and reproduce. The evolution of flight has greatly enhanced the success of fruit flies specifically and insects more generally.1 Control of flight by Drosophila melanogaster is unequivocally visual. Strong optomotor reflexes towards translatory and rotational visual flow stabilize forward flight trajectory, altitude, and speed. 2, 3 The steering responses to translatory and rotational flow in particular are mediated by computationally separate neural circuits in the fly’s visual system,4 and gaze-stabilizing body saccades are elicited by threshold integration of expanding visual flow .5 However, visual information is not alone sufficient to enable a fruit fly to recognize and locate an appropriately smelly object due in part to the relatively poor resolution of its compound eyes. Rather, the animal uses an acute sense of smell to actively track odors during flight. Without a finely adapted olfactory system, the fly’s remarkable visual capabilities are for naught. The relative importance of vision is apparent in the cross-modal fusion of the two modalities for stable active odor tracking.6, 7 Olfactory processing in Drosophila is shaped by ecological and functional forces which are inextricably linked. Thus physiologists seeking the functional determinants of olfactory coding as well as ecologists seeking to understand the mechanisms of speciation do well to consider each others’ point of view. Here we synthesize a broad perspective that integrates across ultimate and proximate mechanisms of odor tracking in Drosophila.  相似文献   

3.
视觉和嗅觉信号对果蝇食物搜寻行为的协同作用   总被引:1,自引:0,他引:1  
冯波  王霞  李岩  杜永均 《昆虫学报》2013,56(7):792-798
为了探索视觉和嗅觉信号在昆虫食物搜寻过程中的作用, 本研究利用杨梅和橘子为引诱物, 在实验室条件下测定了嗅觉和视觉信号诱集到的黑腹果蝇Drosophila melanogaster数量, 分析了嗅觉经历对果蝇嗅觉和视觉食物搜寻的影响。发现同源性嗅觉和视觉信号存在的杨梅诱集到的果蝇数量显著大于单一的视觉信号和嗅觉信号, 但异源性嗅觉和视觉信号组合诱集到的果蝇数量和单独的嗅觉信号相似。嗅觉信号预处理不仅能够显著增加嗅觉信号诱集到的果蝇数量, 其中杨梅嗅觉信号对杨梅预处理果蝇的吸引能力与视觉和嗅觉信号存在的杨梅相似, 而且异源性嗅觉和视觉信号组合诱集到的预处理果蝇数量也不低于视觉和嗅觉信号存在的杨梅。另外杨梅嗅觉信号预处理也能够显著增强杨梅视觉信号诱集到的果蝇数量。但嗅觉预处理并不会改变同源性视觉和嗅觉信号组合诱集到的果蝇数量。本研究表明, 果蝇同时利用视觉和嗅觉信号进行食物搜寻, 因此同源性视觉和嗅觉信号在果蝇诱集过程中具有协同作用。另外果蝇具有较强的记忆和学习能力, 能够将记忆中的嗅觉信号应用于食物搜寻。本研究结果不仅有利于我们了解果蝇在自然状态下的食物搜寻机制, 而且有利于开发更有效的果蝇新型诱捕器。  相似文献   

4.
Animal navigation is guided by multiple sensory cues. Here, we ask whether and how olfactory stimuli emanating from places other than the trained feeding site redirect the flight paths of honeybees. The flight trajectories of individual bees were registered using harmonic radar tracking. Sensory cues (compass direction, distance, visual cues en route and close to the feeding site) associated with the trained flight route dominated wayfinding, but a learned odorant carried by air flow induced excursions into the wind. These redirections were largely restricted to rather small deviations from the trained route (<60°, <200 m) and occurred only if the animal did not receive the trained odorant stimulus at the trained feeding site. Under certain conditions, larger excursions were observed. These findings are discussed in the context of odor guidance of honeybees over longer distances (>300 m from the hive).  相似文献   

5.
6.
Animals need to associate different environmental stimuli with each other regardless of whether they temporally overlap or not. Drosophila melanogaster displays olfactory trace conditioning, where an odor is followed by electric shock reinforcement after a temporal gap, leading to conditioned odor avoidance. Reversing the stimulus timing in olfactory conditioning results in the reversal of memory valence such that an odor that follows shock is later on approached (i.e. relief conditioning). Here, we explored the effects of stimulus timing on memory in another sensory modality, using a visual conditioning paradigm. We found that flies form visual memories of opposite valence depending on stimulus timing and can associate a visual stimulus with reinforcement despite being presented with a temporal gap. These results suggest that associative memories with non-overlapping stimuli and the effect of stimulus timing on memory valence are shared across sensory modalities.  相似文献   

7.
Many parasitoids have been shown to learn visual and/or olfactory cues associated with hosts. In contrast to the Hymenoptera, learning in dipteran parasitoids is relatively unstudied. This study explores the ability of a polyphagous tachinid, Exorista mella, to learn to associate visual and olfactory cues with hosts. In an experiment involving colored host models, flies trained on models of one color were subsequently attracted more strongly to models of the color that they had not experienced. The unsuitability of these models as hosts suggested that the flies may have engaged in avoidance learning. Flies demonstrated the ability to learn to associate colored disks with hosts. A separate experiment demonstrated that flies responded to volatile plant compounds but failed to find evidence for odor learning. Learning of host-associated cues by E. mella may allow this generalist parasitoid to take advantage of locally abundant host populations and maintain host-searching efficiency in an environment.  相似文献   

8.
It is broadly accepted that long-term memory (LTM) is formed sequentially after learning and short-term memory (STM) formation, but the nature of the relationship between early and late memory traces remains heavily debated [1-5]. To shed light on this issue, we used an olfactory appetitive conditioning in Drosophila, wherein starved flies learned to associate an odor with the presence of sugar [6]. We took advantage of the fact that both STM and LTM are generated after a unique conditioning cycle [7, 8] to demonstrate that appetitive LTM is able to form independently of STM. More specifically, we show that (1) STM retrieval involves output from γ neurons of the mushroom body (MB), i.e., the olfactory memory center [9, 10], whereas LTM retrieval involves output from αβ MB neurons; (2) STM information is not transferred from γ neurons to αβ neurons for LTM formation; and (3) the adenylyl cyclase RUT, which is thought to operate as a coincidence detector between the olfactory stimulus and the sugar stimulus [11-14], is required independently in γ neurons to form appetitive STM and in αβ neurons to form LTM. Taken together, these results demonstrate that appetitive short- and long-term memories are formed and processed in parallel.  相似文献   

9.
Olfactory tracking generally sacrifices speed for sensitivity, but some fast-moving animals appear surprisingly efficient at foraging by smell. Here, we analysed the olfactory tracking strategies of flying bats foraging for fruit. Fruit- and nectar-feeding bats use odour cues to find food despite the sensory challenges derived from fast flight speeds and echolocation. We trained Jamaican fruit-eating bats (Artibeus jamaicensis) to locate an odour reward and reconstructed their flight paths in three-dimensional space. Results confirmed that bats relied upon olfactory cues to locate a reward. Flight paths revealed a combination of odour- and memory-guided search strategies. During ‘inspection flights’, bats significantly reduced flight speeds and flew within approximately 6 cm of possible targets to evaluate the presence or absence of the odour cue. This behaviour combined with echolocation explains how bats maximize foraging efficiency while compensating for trade-offs associated with olfactory detection and locomotion.  相似文献   

10.
Animals often use different sensory systems to assess different sexually selected signals from potential mates. However, the relative importance of different signals on mate choice is not well understood in many animal species. In this study, we examined the relative importance of male olfactory and visual cues on female preference in the guppy Poecilia reticulata. We used digitally modified male images to standardize visual stimuli. We found that, regardless of whether females were presented without male visual stimuli or with identical male visual stimuli, they preferred stimuli with the odor of males to those without. However, when females were allowed to choose between dull male visual stimuli with male odor, and brightly colored male visual stimuli without male odor, there was no clear preference for either. Some females preferred the dull male visual stimuli with male odor, whereas some other females preferred the brightly colored male visual stimuli without male odor. These results indicate that the relative importance of olfactory and visual cues in female mate preference varied between individuals.  相似文献   

11.
Light activation of an innate olfactory avoidance response in Drosophila   总被引:4,自引:0,他引:4  
How specific sensory stimuli evoke specific behaviors is a fundamental problem in neurobiology. In Drosophila, most odorants elicit attraction or avoidance depending on their concentration, as well as their identity [1]. Such odorants, moreover, typically activate combinations of glomeruli in the antennal lobe of the brain [2-4], complicating the dissection of the circuits translating odor recognition into behavior. Carbon dioxide (CO2), in contrast, elicits avoidance over a wide range of concentrations [5, 6] and activates only a single glomerulus, V [5]. The V glomerulus receives projections from olfactory receptor neurons (ORNs) that coexpress two GPCRs, Gr21a and Gr63a, that together comprise a CO2 receptor [7-9]. These CO2-sensitive ORNs, located in the ab1 sensilla of the antenna, are called ab1c neurons [10]. Genetic silencing of ab1c neurons indicates that they are necessary for CO2-avoidance behavior [5]. Whether activation of these neurons alone is sufficient to elicit this behavior, or whether CO2 avoidance requires additional inputs (e.g., from the respiratory system), remains unclear. Here, we show that artificial stimulation of ab1c neurons with light (normally attractive to flies) elicits the avoidance behavior typical of CO2. Thus, avoidance behavior appears hardwired into the olfactory circuitry that detects CO2 in Drosophila.  相似文献   

12.
Flying insects use visual cues to stabilize their heading in a wind stream. Many animals additionally track odors carried in the wind. As such, visual stabilization of upwind tracking directly aids in odor tracking. But do olfactory signals directly influence visual tracking behavior independently from wind cues? Additionally, recent advances in olfactory molecular genetics and neurophysiology have motivated novel quantitative behavioral analyses to assess the behavioral influence of (e.g.) genetically inactivating specific olfactory activation circuits. We modified a magnetic tether system originally devised for vision experiments by equipping the arena with narrow laminar flow odor plumes. Here we focus on experiments that can be performed after a fly is tethered and is able to navigate in the magnetic arena. We show how to acquire video images optimized for measuring body angle, how to judge stable odor tracking, and we illustrate two experiments to examine the influence of visual cues on odor tracking.Download video file.(56M, flv)  相似文献   

13.
Male-male courtship behavior was recently reported to be induced in large populations of Drosophila (e.g., 600–1500 flies) by ectopic expression of the white (w) gene. Little is known about the basis of this behavior; in male-female courtship, sensory cues are believed to play an important role. Previous data are consistent with the possibility that misexpression of w causes abnormal reception or processing of sensory information. We show here that w-induced male-male courtship occurs in isolated pairs of flies. Thus the behavior does not depend on sensory cues found only among large populations of flies, or on cues produced only by a small subset of such populations. This finding enabled quantitative analysis of mechanisms that underlie the behavior. Specifically, male-male courtship does not depend on the reception of olfactory information, nor on the reception or generation of auditory cues, as determined by surgical ablation of antennae, maxillary palps, or wings. Although the rapid onset of the behavior following w induction suggested that its basis could lie in a modulation of sensory physiology, we found visual, olfactory, and gustatory function to be normal in physiological or behavioral tests. The only sensory deprivation to produce an effect on male-male courtship was testing under dim red light; the percentage of flies courting another male was reduced to one-fourth of control values. A striking age dependence of the behavior is also documented: courtship between paired male mini-w+ flies was not observed in tests of very young (1-day-old) flies, but occurs at high levels between the ages of 1 and 4 weeks. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Navigating toward (or away from) a remote odor source is a challenging problem that requires integrating olfactory information with visual and mechanosensory cues. Drosophila melanogaster is a useful organism for studying the neural mechanisms of these navigation behaviors. There are a wealth of genetic tools in this organism, as well as a history of inventive behavioral experiments. There is also a large and growing literature in Drosophila on the neural coding of olfactory, visual, and mechanosensory stimuli. Here we review recent progress in understanding how these stimulus modalities are encoded in the Drosophila nervous system. We also discuss what strategies a fly might use to navigate in a natural olfactory landscape while making use of all these sources of sensory information. We emphasize that Drosophila are likely to switch between multiple strategies for olfactory navigation, depending on the availability of various sensory cues. Finally, we highlight future research directions that will be important in understanding the neural circuits that underlie these behaviors.  相似文献   

15.
Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.  相似文献   

16.
Fruit flies alter flight direction by generating rapid stereotyped turns called saccades. Using a combination of tethered and free-flight methods, both the aerodynamic mechanisms and the sensory triggers for saccades have been investigated. The results indicate that saccades are elicited by visual expansion, and are brought about by remarkably subtle changes in wing motion. Mechanosensory feedback from the fly's 'gyroscope' complements visual cues to terminate saccades, as well as to stabilize forward flight. Olfactory stimuli elicit tonic increases in wingbeat amplitude and frequency but do not alter the time course or magnitude of visual reflexes.  相似文献   

17.
The sensory basis of olfactory search behavior was investigated in the banded kokopu, Galaxias fasciatus, using a flow tank. In the presence of a 2 cm s(-1) current flow, banded kokopu use both water current and chemical information to locate a food odor source. The superficial neuromasts of the lateral line system mediate the rheotactic component of the odor search. A physical block of one olfactory nostril did not affect the olfactory search strategy employed by banded kokopu in still water or in the presence of a current flow. Thus, there is no evidence that banded kokopu perform a bilateral comparison of the olfactory stimulus during their odor search. Previously, olfaction and gustation have been the only sensory systems shown to directly mediate orientation and movement towards odor sources in fish. The use of hydrodynamic cues by fish in location of an olfactory source has been previously proposed, but without direct experimental identification of the sensory systems employed. This study identifies the contributing roles of both olfactory and hydrodynamic sensory systems to the olfactory search repertoire of fish.  相似文献   

18.
Olfactory sensory stimulation induces a fast-phase arrest response (FPA-R) of the blowfly heart activity that has been described as a sensitive tool for testing insect reactivity to odor perception. We analyzed FPA-R occurrence to repeated olfactory stimulation with low and high 1-hexanol concentrations that are behaviorally attractant and repellent, respectively, in the blowfly. FPA-R occurrence diminished and ceased with repeated presentations of low and medium odor concentrations, according to dynamics inversely related to odor doses. On the other hand, repeated stimulation with higher odor concentrations induced persistent FPA-Rs. Sensory input amplitude to repeated presentations of singly tested odor concentrations did not change throughout stimulation sessions. A spontaneous restoration of FPA-R to olfactory stimulation was recorded 30 min after cessation of FPA-R to a previous olfactory stimulation session. However, a prompt restoration of FPA-R to olfactory stimulation after cessation of FPA-R was obtained following mechano-taste stimulation of labellar sensilla. Our findings show that the FPA-R habituates to olfactory sensory stimulation with low and medium odor concentrations according to dynamics inversely related to odor intensities. On the other hand, the FPA-R does not habituate to higher odor concentrations. Therefore, flies learn to disregard nonaversive odor information, but they cannot ignore iterative detection of a repellent volatile.  相似文献   

19.
When correlation implies causation in multisensory integration   总被引:1,自引:0,他引:1  
Inferring which signals have a common underlying cause, and hence should be integrated, represents a primary challenge for a perceptual system dealing with multiple sensory inputs [1-3]. This challenge is often referred to as the correspondence problem or causal inference. Previous research has demonstrated that spatiotemporal cues, along with prior knowledge, are exploited by the human brain to solve this problem [4-9]. Here we explore the role of correlation between the fine temporal structure of auditory and visual signals in causal inference. Specifically, we investigated whether correlated signals are inferred to originate from the same distal event and hence are integrated optimally [10]. In a localization task with visual, auditory, and combined audiovisual targets, the improvement in precision for combined relative to unimodal targets was statistically optimal only when audiovisual signals were correlated. This result demonstrates that humans use the similarity in the temporal structure of multisensory signals to solve the correspondence problem, hence inferring causation from correlation.  相似文献   

20.
Odor supported place cell model and goal navigation in rodents   总被引:1,自引:1,他引:0  
Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self-generated olfactory cues, together with a mixed navigation strategy, improves goal directed navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号