首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma (P)-component of amyloid (AP or SAP), while not an integral part of the amyloid fibril, has been considered to be intimately associated with virtually every different type of amyloid. In the present study, we evaluated the distribution of AP in the organs frequently involved in two forms of human systemic amyloidosis (AA and AF) and in mouse AA amyloidosis, by use of immunohistochemistry with anti-AP. Although the amyloid deposits generally showed moderate reactions with anti-AP, they were not always clearly distinguished from the surrounding non-amyloid tissue elements which often stained as well. The basement membrane often showed even stronger reaction to anti-AP than the adjacent amyloid deposits, and liver sections demonstrated such a high overall reaction to anti-AP that the anti-AP reaction on the amyloid deposits was often obscurred. The present results suggest that the binding between AP and the amyloid fibril may not be monospecific, that AP by this technique occurs rather widely throughout the body, and therefore that anti-AP may not be considered as specific a marker for amyloid deposits in immunohistochemical and perhaps other studies as well.  相似文献   

2.
Apolipoprotein AI (apoAI), a major component of high-density lipoproteins, is one of the major amyloid fibril proteins and a minor constituent of the senile plaques observed in Alzheimer's disease. We examined colocalization of apoAI in various kinds of systemic amyloidosis in this study. Forty-three of 48 formalin-fixed paraffin-embedded heart specimens with various forms of systemic amyloidosis reacted immunohistochemically with anti-human apoAI antibody. ApoAI was also detected in water-extracted amyloid material by immunoblotting. In addition, we observed colocalization of apoAI and murine amyloid A (AA) amyloidosis in human apoAI transgenic mice. This is the first report of colocalization of apoAI with amyloid deposits in various forms of human systemic amyloidosis and murine AA amyloidosis in human apoAI transgenic mice. ApoAI may not always be a major component of amyloid fibrils, even when it is present in systemic amyloid deposits.  相似文献   

3.
R. Baumal  B. Wilson  E. Pass 《CMAJ》1975,113(6):512-516
Myeloma-associated and casein-induced murine amyloidosis were used as models to study the role of lymphocytes and macrophages in amyloid formation. Amyloidosis occurred rarely and in small amounts in Balb/C mice with immunoglobulin (Ig)-producing myeloma tumours but large amounts could be induced by injections of casein. Fluorescent staining of both forms of amyloid deposits by means of anti-casein- and anti-myeloma-amyloid antibodies indicated that they either crossreacted or coexisted. Nor abnormality of Ig biosynthesis was detected in amyloidosis, suggesting that abnormal degradation was responsible for production of the Ig form of amyloid. Although spleen lymphocytes of casein-injected mice with amyloidosis demonstrated diminished cellular immunologic responses, this did not indicate generalized immunologic incompetence. The non-Ig form of amyloid in casein-injected mice was shown to be produced by macrophages, and a technique was developed for increasing the yield of amyloid-containing cells.  相似文献   

4.
The indirect electron microscope immunoperoxidase method utilizing pure rabbit antibodies to protein of mouse amyloid fibrils was used for studying casein-induced amyloidosis in mice. At the early stages of amyloidosis there appeared deposits of fine granular material in the mouse myocardium. These deposits contained an antigen similar to the amyloid fibrils antigen, but the deposits had no fibrillar ultrastructure. The results testify to the presence of early nonfibrillar stage of amyloid formation.  相似文献   

5.
Amyloid enhancing factor (AEF) is derived from the tissues of pre-amyloidotic and amyloidotic animals and, when transferred, greatly accelerates amyloid induction in the recipient murine models. It has also been reported that similarly accelerated amyloid induction can be achieved in mice by injection of human splenic homogenates from patients with amyloidosis. The present study has attempted to characterize further the mechanism of this "heterologous transfer of amyloid". Treatment of mice with the "tissue homogenate" or the "AEF extract" of AA-, AL- and A prealbumin-laden human spleens followed by daily subcutaneous casein injections induced amyloidosis in an accelerated fashion. The resultant amyloid deposits in mice had strongly positive immunohistochemical reactions with anti-mouse AA, and negative reaction with anti-human AA or anti-human prealbumin. The results lend support to the idea that accelerated amyloid induction in the recipient mice is unlikely to be due to transfer of human amyloid substance, but rather to formation of "native" murine amyloid under the influence of a human AEF factor similar to or identical with AEF described in mouse-to mouse transfer models.  相似文献   

6.
7.
The mechanism behind amyloid formation is unknown in all types of amyloidosis. Several substances can enhance amyloid formation in animal experiments. To induce secondary systemic amyloid (AA-type amyloid) formation, we injected silver nitrate into mice together with either amyloid fibrils obtained from patients with familial polyneuropathy (FAP) type I or polyethylene glycol (PEG). Mice injected with silver nitrate only served as controls. Amyloid deposits were detectable at day 3 in animals injected with amyloid fibrils and in those injected with PEG, whereas in control mice, deposits were not noted before day 12. Our results indicate that amyloid fibrils from FAP patients and even a non-sulfate containing polysaccharide (PEG) have the potential to act as amyloid-enhancing factors.  相似文献   

8.
Recent studies clearly demonstrated that several types of pathogenic amyloid proteins acted as agents that could transmit amyloidosis by means of a prion-like mechanism. Systemic AA amyloidosis is one of the most severe complications of chronic inflammatory disorders, particularly rheumatoid arthritis. It is well known that, similar to an infectious prion protein, amyloid-enhancing factor (AEF) acts as a transmissible agent in AA amyloidosis. However, how AEF transmits AA amyloidosis in vivo remained to be fully elucidated. In the present study, we focused on finding cell-free forms of AEF and its carriers in circulation by using the murine transfer model of AA amyloidosis. We first determined that circulating cell-free AEF existed in blood and plasma in mice with systemic AA amyloidosis. Second, we established that plasma exosomes containing AA amyloid oligomers derived from serum amyloid A had AEF activity and could transmit systemic AA amyloidosis via a prion-like mechanism. These novel findings should provide insights into the transmission mechanism of systemic amyloidoses.  相似文献   

9.
Alkaptonuria (AKU) is an ultra-rare disease developed from the lack of homogentisic acid oxidase activity, causing homogentisic acid (HGA) accumulation that produces a HGA-melanin ochronotic pigment, of unknown composition. There is no therapy for AKU. Our aim was to verify if AKU implied a secondary amyloidosis. Congo Red, Thioflavin-T staining and TEM were performed to assess amyloid presence in AKU specimens (cartilage, synovia, periumbelical fat, salivary gland) and in HGA-treated human chondrocytes and cartilage. SAA and SAP deposition was examined using immunofluorescence and their levels were evaluated in the patients' plasma by ELISA. 2D electrophoresis was undertaken in AKU cells to evaluate the levels of proteins involved in amyloidogenesis. AKU osteoarticular tissues contained SAA-amyloid in 7/7 patients. Ochronotic pigment and amyloid co-localized in AKU osteoarticular tissues. SAA and SAP composition of the deposits assessed secondary type of amyloidosis. High levels of SAA and SAP were found in AKU patients' plasma. Systemic amyloidosis was assessed by Congo Red staining of patients' abdominal fat and salivary gland. AKU is the second pathology after Parkinson's disease where amyloid is associated with a form of melanin. Aberrant expression of proteins involved in amyloidogenesis has been found in AKU cells. Our findings on alkaptonuria as a novel type II AA amyloidosis open new important perspectives for its therapy, since methotrexate treatment proved to significantly reduce in vitro HGA-induced A-amyloid aggregates.  相似文献   

10.
Antisera were raised against degrading amyloid fibrils isolated from the heart of a patient with senile cardiac amyloidosis (SCA), and from a medullary carcinoma of the thyroid (MCT). The antisera were absorbed and used in indirect immunofluorescence to identify an amyloid fibril protein (ASCA) in heart tissue from patients with senile cardiac amyloidosis and to identify the amyloid fibril protein (AMCT) found in association with medullary carcinomas of the thyroid. Absorbed anti-ASCA antiserum did not react with normal tissue such as heart, liver, spleen, and striated muscle, or with amyloid tissue known to contain amyloid fibril proteins AA, AlambdaI, AlambdaIV, AlambdaV, AMCT or with pancreatic tissue containing islet amyloid deposits. The reactions with senile amyloid he,rt tissue could be blocked completely by degraded amyloid fibrils extracted from senile amyloid heart tissue or by amyloid fibril protein ASCA isolated from such fibrils. The anti-AMCT antiserum showed a similar specific reaction restricted to amyloid associated with MCT. In addition, antisera specific for amyloid fibril proteins AA, AlambdaI, AlambdaIV, and AlambdaV failed to react with senile cardiac amyloid, pancreatic islet amyloid, or medullary thyroid amyloid.  相似文献   

11.
Recent classification of amyloidosis is based on the chemical type of amyloid protein involved. In this study, routinely embedded kidney biopsies from nine patients with generalized amyloidosis and renal involvement were tested by immunoelectron microscopy, using the protein A-gold technique, with a panel of antibodies against the following amyloid proteins: AA, A lambda, A kappa and AF. Among the antibodies, the anti-AA was monoclonal (mc1) and the others polyclonal. In all nine cases, only one type of antibody reacted with each amyloid type. Six cases were classified as AA and three cases as A lambda type. These classifications were in agreement with the clinical data and the results of serum and urine immunoelectrophoresis. The gold particles were always associated with amyloid fibrils. No reaction was evident when an amyloid type was stained by a non-corresponding antibody, or in the four control cases without amyloid. The results show that antigenic classification of amyloid is feasible on routinely processed ultra-thin epoxy sections by immunoelectron microscopy, and thus affords the possibility of retrospective studies.  相似文献   

12.
Spongiform encephalopathies have been reported to be transmitted by blood transfusion even prior to the clinical onset. Experimental AA-amyloidosis shows similarities with prion disease and amyloid-containing organ-extracts can prime a recipient for the disease. In this systemic form of amyloidosis N-terminal fragments of the acute-phase reactant apolipoprotein serum amyloid A are the main amyloid protein. Initial amyloid deposits appear in the perifollicular region of the spleen, followed by deposits in the liver. We used the established murine model and induced AA-amyloidosis in NMRI mice by intravenous injections of purified amyloid fibrils ('amyloid enhancing factor') combined with inflammatory challenge (silver nitrate subcutaneously). Blood plasma and peripheral blood monocytes were isolated, sonicated and re-injected into new recipients followed by an inflammatory challenge during a three week period. When the animals were sacrificed presence of amyloid was analyzed in spleen sections after Congo red staining. Our result shows that some of the peripheral blood monocytes, isolated from animals with detectable amyloid, contained amyloid-seed that primed for AA-amyloid. The seeding material seems to have been phagocytosed by the cells since the AA-precursor (SAA1) was found not be expressed by the monocytes. Plasma recovered from mice with AA amyloidosis lacked seeding capacity. Amyloid enhancing activity can reside in monocytes recovered from mice with AA-amyloidosis and in a prion-like way trigger amyloid formation in conjunction with an inflammatory disorder. Human AA-amyloidosis resembles the murine form and every individual is expected to be exposed to conditions that initiate production of the acute-phase reactant. The monocyte-transfer mechanism should be eligible for the human disease and we point out blood transfusion as a putative route for transfer of amyloidosis.  相似文献   

13.
Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer’s disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant “binding site barrier” effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.  相似文献   

14.
Dynamic molecular imaging provides bio-kinetic data that is used to characterize novel radiolabeled tracers for the detection of disease. Amyloidosis is a rare protein misfolding disease that can affect many organs. It is characterized by extracellular deposits composed principally of fibrillar proteins and hypersulfated proteoglycans. We have previously described a peptide, p5, which binds preferentially to amyloid deposits in a murine model of reactive (AA) amyloidosis. We have determined the whole body distribution of amyloid by molecular imaging techniques using radioiodinated p5. The loss of radioiodide from imaging probes due to enzymatic reaction has plagued the use of radioiodinated peptides and antibodies. Therefore, we studied iodine-124-labeled p5 by using dynamic PET imaging of both amyloid-laden and healthy mice to assess the rates of amyloid binding, the relevance of dehalogenation and the fate of the radiolabeled peptide. Rates of blood pool clearance, tissue accumulation and dehalogenation of the peptide were estimated from the images. Comparisons of these properties between the amyloid-laden and healthy mice provided kinetic profiles whose differences may prove to be indicative of the disease state. Additionally, we performed longitudinal SPECT/CT imaging with iodine-125-labeled p5 up to 72 h post injection to determine the stability of the radioiodinated peptide when bound to the extracellular amyloid. Our data show that amyloid-associated peptide, in contrast to the unbound peptide, is resistant to dehalogenation resulting in enhanced amyloid-specific imaging. These data further support the utility of this peptide for detecting amyloidosis and monitoring potential therapeutic strategies in patients.  相似文献   

15.
Systemic amyloidosis of the amyloid A (AA) type, is occasionally associated with various neoplasms, but the cause is still unclear. We obtained interleukin 6 (IL-6)-producing cells designated YO from a primary culture of a malignant peritoneal mesothelioma of epithelial type obtained from a 62-year-old woman. Post mortem examination revealed that the patient had systemic amyloidosis of the AA type. The supernatant media of YO cells, as well as recombinant human IL-6, successfully induced nonneoplastic liver cells to produce serum AA (SAA). Our data suggest that IL-6 produced by the tumor cells may have played an important role in the paraneoplastic syndrome of AA amyloidosis in this patient.  相似文献   

16.
AA amyloidosis is a systemic disease that develops secondary to chronic inflammatory diseases Macrophages are often found in the vicinity of amyloid deposits and considered to play a role in both formation and degradation of amyloid fibrils. In spleen reside at least three types of macrophages, red pulp macrophages (RPM), marginal zone macrophages (MZM), metallophilic marginal zone macrophages (MMZM). MMZM and MZM are located in the marginal zone and express a unique collection of scavenger receptors that are involved in the uptake of blood-born particles. The murine AA amyloid model that resembles the human form of the disease has been used to study amyloid effects on different macrophage populations. Amyloid was induced by intravenous injection of amyloid enhancing factor and subcutaneous injections of silver nitrate and macrophages were identified with specific antibodies. We show that MZMs are highly sensitive to amyloid and decrease in number progressively with increasing amyloid load. Total area of MMZMs is unaffected by amyloid but cells are activated and migrate into the white pulp. In a group of mice spleen macrophages were depleted by an intravenous injection of clodronate filled liposomes. Subsequent injections of AEF and silver nitrate showed a sustained amyloid development. RPMs that constitute the majority of macrophages in spleen, appear insensitive to amyloid and do not participate in amyloid formation.  相似文献   

17.
Methods for staining amyloid in tissues: a review   总被引:5,自引:0,他引:5  
The traditional way of identifying amyloid in tissue sections has been staining with Congo red and demonstration of green birefringence under crossed polarizers. The original method of Congo red staining, described by Bennhold in 1922, has undergone several modifications to improve its sensitivity, specificity, and reliability. The most common modification is the alkaline Congo red method described by Puchtler and co-workers in 1962. Specificity is improved by using freshly prepared stain and a staining solution fully saturated with sodium chloride. Amyloid proteins can be further distinguished by autoclaving or by treating the tissue with potassium permanganate or alkaline guanidine. Autoclaving the tissues at 120 C for 30 min causes protein AA to lose its affinity for Congo red. Prolongation of autoclaving to 120 min abolishes the Congophilia of protein AL, but prealbumin-related amyloid shows little or no change. Treatment of the tissue with potassium permanganate causes protein AA and B2-microglobulin amyloid to lose their affinity to Congo red. Protein AA fails to stain with Congo red after treatment with alkaline guanidine for 1 min and protein AL and systemic senile amyloid protein (SSA) after 2 hr. Familial amyloid protein (FAP), prealbumin type, can stand 2 hr of alkaline guanidine treatment without losing its ability to stain with Congo red. Other methods of detection of amyloid include fluorescent stains, e.g., thioflavin T or S, and metachromatic stains such as crystal violet. Immunofluorescence and immunoperoxidase methods are used to identify and classify amyloid proteins in tissues. Antibodies against the P component, proteins AA and AL and FAP have been used with great precision. Due to cross-reactivity, these methods do not differentiate between some types of familial and senile systemic amyloidosis.  相似文献   

18.
The pathogenesis of amyloidosis is not well understood. Here, Zafer Ali-Khan, Weihua Li and Sic L. Chan present a metazoan parasite mouse model of reactive amyloidosis, review the relationship between chronic inflammation and multiorgan AA amyloidosis and postulate how ubiquitin might function in the processing of serum amyloid A and in AA amyloid formation in the endosomes-lysosomes of activated murine reticuloendothetial cells.  相似文献   

19.
Amyloidogenesis is a characteristic feature of the 40 or so known protein deposition diseases, and accumulating evidence strongly suggests that self-association of misfolded proteins into either fibrils, protofibrils, or soluble oligomeric species is cytotoxic. The most likely mechanism for toxicity is through perturbation of membrane structure, leading to increased membrane permeability and eventual cell death. There have been a rather limited number of investigations of the interactions of amyloidogenic polypeptides and their aggregated states with membranes; these are briefly reviewed here. Amyloidogenic proteins discussed include A-beta from Alzheimer's disease, the prion protein, α-synuclein from Parkinson's disease, transthyretin (FAP, SSA amyloidosis), immunoglobulin light chains (primary (AL) amyloidosis), serum amyloid A (secondary (AA) amyloidosis), amylin or IAPP (Type 2 diabetes) and apolipoproteins. This review highlights the significant role played by fluorescence techniques in unraveling the nature of amyloid fibrils and their interactions and effects on membranes. Fluorescence spectroscopy is a valuable and versatile method for studying the complex mechanisms of protein aggregation, amyloid fibril formation and the interactions of amyloidogenic proteins with membranes. Commonly used fluorescent techniques include intrinsic and extrinsic fluorophores, fluorescent probes incorporated in the membrane, steady-state and lifetime measurements of fluorescence emission, fluorescence correlation spectroscopy, fluorescence anisotropy and polarization, fluorescence resonance energy transfer (FRET), fluorescence quenching, and fluorescence microscopy.  相似文献   

20.
Amyloidogenesis is a characteristic feature of the 40 or so known protein deposition diseases, and accumulating evidence strongly suggests that self-association of misfolded proteins into either fibrils, protofibrils, or soluble oligomeric species is cytotoxic. The most likely mechanism for toxicity is through perturbation of membrane structure, leading to increased membrane permeability and eventual cell death. There have been a rather limited number of investigations of the interactions of amyloidogenic polypeptides and their aggregated states with membranes; these are briefly reviewed here. Amyloidogenic proteins discussed include A-beta from Alzheimer's disease, the prion protein, alpha-synuclein from Parkinson's disease, transthyretin (FAP, SSA amyloidosis), immunoglobulin light chains (primary (AL) amyloidosis), serum amyloid A (secondary (AA) amyloidosis), amylin or IAPP (Type 2 diabetes) and apolipoproteins. This review highlights the significant role played by fluorescence techniques in unraveling the nature of amyloid fibrils and their interactions and effects on membranes. Fluorescence spectroscopy is a valuable and versatile method for studying the complex mechanisms of protein aggregation, amyloid fibril formation and the interactions of amyloidogenic proteins with membranes. Commonly used fluorescent techniques include intrinsic and extrinsic fluorophores, fluorescent probes incorporated in the membrane, steady-state and lifetime measurements of fluorescence emission, fluorescence correlation spectroscopy, fluorescence anisotropy and polarization, fluorescence resonance energy transfer (FRET), fluorescence quenching, and fluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号