首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active Transport of Biotin in Escherichia coli K-12   总被引:5,自引:3,他引:2       下载免费PDF全文
The transport of [(14)C]biotin into cells of a biotin prototroph, Escherichia coli K-12 strain Y10-1, was investigated. The vitamin taken up by the cells in this strain existed primarily in the free form. Addition of glucose enhanced the rate of uptake six- to eightfold and the steady level was reached in 2 to 3 min resulting in accumulation of biotin against a concentration gradient. The uptake showed marked dependence on temperature (Q(10), 2.3; optimum, 37 C) and pH (optimum 6.6) and was inhibited by iodoacetate. Energy of activation for glucose-dependent uptake was calculated to be 16,200 cal per mol. The rate of biotin uptake with increasing biotin concentrations showed saturation kinetics with an apparent K(m) and V(max) values of 1.4 x 10(-7) M and 6.6 pmol per mg of dry cells per min respectively. The cells also accumulated biotin against a concentration gradient in the absence of added glucose, although at a much lower rate. This accumulation was much more susceptible to inhibition by azide and uncouplers of oxidative phosphorylation suggesting that the energy source was supplied through the electron-transport chain. Inhibition studies with a number of biotin analogues indicated the requirement for an intact ureido ring. The biotin uptake was inhibited in cells grown in biotin-containing medium and was shown to be the result of repression of the transport system, suggesting the control of the biotin transport.  相似文献   

2.
Little is known about the cellular and molecular regulation of the uptake process of the water-soluble vitamin biotin into liver cells, the major site of biotin utilization and metabolism. Such studies are best done using a highly viable and homogeneous cellular system that allows examination of prolonged exposure to an agent(s) or a particular condition(s) on the uptake process. Isolated hepatocytes when maintained in primary culture lose their ability to transport biotin by the specialized carrier system. The aim of the present study was, therefore, to examine the mechanism(s) of biotin uptake by the cultured human-derived liver cells, Hep G2. Uptake to biotin by Hep G2 cells was appreciable and linear for up to 10 min of incubation. The uptake process was Na+ gradient-dependent as indicated by studies of Na+ replacement and pretreatment of cells with gramicidin and ouabain. Biotin uptake was also dependent on both incubation temperature and intracellular energy. Unlabeled biotin and the structural analogs with free carboxyl groups (thioctic acid, desthiobiotin) but not those with blocked carboxyl group (biocytin, biotin methyl ester, and thioctic amide) caused significant inhibition of 3H-biotin uptake at 37°C but not 4°C. Initial rate of biotin uptake was saturable as a function of concentration at 37°C but was lower and linear at 4°C. Pretreatment of Hep G2 cells with sulfhydryl group inhibitors (e.g., p-chloromer-curibenzene sulfonate) led to a significant inhibition in biotin uptake; this inhibition was effectively reversed by reducing agents (e.g., dithiothreitol). Biotin uptake was also inhibited by the membrane transport inhibitors probenecid (noncompetitively), DIDS and furosemide but not by amiloride. Pretreatment of Hep G2 cells with valinomycin did not alter biotin uptake. The stoichiometric ratio of biotin to Na+ uptake in Hep G2 cells was also determined and found to be 1:1. These findings demonstrate that biotin uptake by these cultured liver cells is mediated through a specialized carrier system that is dependent on Na+-gradient, temperature, and energy and transports the vitamin by an electroneutral process. These findings are similar to those seen with native liver tissue preparations and demonstrate the suitability of Hep G2 cells for in-depth investigations of the cellular and molecular regulation of biotin uptake by the liver. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work, and as such, is in the public domain in the United State of America
  • .  相似文献   

    3.
    Regulation of Biotin Transport in Saccharomyces cerevisiae   总被引:6,自引:4,他引:2       下载免费PDF全文
    The metabolic control of biotin transport in Saccharomyces cerevisiae was investigated. Nonproliferating cells harvested from cultures grown in excess biotin (25 ng/ml) took up small amounts of biotin, whereas cells grown in biotin-sufficient medium (0.25 ng/ml) accumulated large amounts of the vitamin. Transport was inhibited maximally in cells grown in medium containing 9 ng (or more) of biotin per ml. When avidin was added to biotin-excess cultures, the cells developed the ability to take up large amounts of biotin. Boiled avidin was without effect, as was treatment of cells with avidin in buffer. Avidin did not relieve transport inhibition when added to biotin-excess cultures treated with cycloheximide, suggesting that protein synthesis was required for cells to develop the capacity to take up biotin after removal of extracellular vitamin by avidin. Cycloheximide did not inhibit the activity of the preformed transport system in biotin-sufficient cells. The presence of high intracellular free biotin pools did not inhibit the activity of the transport system. The characteristics of transport in biotin-excess cells (absence of temperature or pH dependence, no stimulation by glucose, absence of iodoacetate inhibition, independence of uptake on cell concentration, and nonsaturation kinetics) indicated that biotin entered these cells by diffusion. The results suggest that the synthesis of the biotin transport system in S. cerevisiae may be repressed during growth in medium containing high concentrations of biotin.  相似文献   

    4.
    Biotin uptake, utilization, and efflux were studied in normal and biotin-deficient cultured rat hepatocytes. Biotin-deficient cells accumulate about 16-fold more biotin than do normal cells when incubated with a physiological concentration of biotin for 24 h. This difference is due to the greater amount of protein-bound biotin relative to free biotin in biotin-deficient hepatocytes, and is attributable to the presence of more apocarboxylases in deficient cells. The rate of biotin uptake and the rate of activation of the carboxylases, acetyl-CoA carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, and beta-methylcrotonyl-CoA carboxylase, are proportional to the concentration of exogenous biotin. Increases in carboxylase activities are proportional to the concentration of biotin only at exogenous biotin concentrations of less than 410 nM. Concentrations of 410 nM or more biotin increase carboxylase activities to normal or near normal. Biocytin inhibits biotin uptake at very high concentrations, whereas desthiobiotin and lipoic acid have no effect. Biocytin in the medium results in carboxylase activation either intracellularly or extracellularly by conversion to biotin by biotinidase. Investigation of the efflux of biotin from normal and biotin-deficient cells preincubated with the vitamin showed greater retention of biotin by biotin-deficient cells than by normal cells over 24 h. Retention of free biotin is similar in biotin-deficient and normal cells. The greater amount of biotin retained by biotin-deficient cells is accounted for by the greater amount of bound biotin in these cells. These results suggest that the free and bound biotin pools are independently regulated. The ready loss of free biotin from these cells has implications for the treatment of inherited, biotin-responsive carboxylase deficiencies.  相似文献   

    5.
    It has been well established that human intestinal and liver epithelial cells transport biotin via an Na+-dependent carrier-mediated mechanism. The sodium-dependent multivitamin transport (SMVT), a biotin transporter, is expressed in both cell types. However, the relative contribution of SMVT toward total carrier-mediated uptake of physiological (nanomolar) concentrations of biotin by these cells is not clear. Addressing this issue is important, especially in light of the recent identification of a second human high-affinity biotin uptake mechanism that operates at the nanomolar range. Hence, we employed a physiological approach of characterizing biotin uptake by human-derived intestinal Caco-2 and HepG2 cells at the nanomolar concentration range. We also employed a molecular biology approach of selectively silencing the endogenous SMVT of these cells with specific small interfering RNAs (siRNAs), then examining carrier-mediated biotin uptake. The results showed that in both Caco-2 and HepG2 cells, the initial rate of biotin uptake as a function of concentration over the range of 0.1 to 50 nM to be linear. Furthermore, we found that the addition of 100 nM unlabeled biotin, desthiobiotin, or pantothenic acid to the incubation medium had no effect on the uptake of 2.6 nM [3H]biotin. Pretreatment of Caco-2 and HepG2 cells with SMVT specific siRNAs substantially reduced SMVT mRNA and protein levels. In addition, carrier-mediated [3H]biotin (2.6 nM) uptake by Caco-2 and HepG2 cells was severely (P 0.01) inhibited by the siRNAs pretreatment. These results demonstrate that the recently described human high-affinity biotin uptake system is not functional in intestinal and liver epithelial cells. In addition, the results provide strong evidence that SMVT is the major (if not the only) biotin uptake system that operates in these cells.  相似文献   

    6.
    Biotin uptake: influx, efflux and countertransport in Escherichia coli K12   总被引:1,自引:0,他引:1  
    Biotin uptake by Escherichia coli K12 has been reinvestigated. The vitamin uptake is an active process depending on energy and inhibited by uncouplers. The kinetic parameters (Km = 0.27 microM, Vmax = 6.8 pmol/min per mg dry cells) are close to those previously determined for a biotin-dependent strain E. coli C162 (Piffeteau, A., Zamboni, M. and Gaudry, M. (1982) Biochim. Biophys. Acta 688, 29-36). By use of biotin p-nitrophenyl ester, an affinity label of the biotin transport system, it was shown, under conditions of steady state, that the efflux of biotin is not energy dependent and is mainly mediated by a diffusion mechanism. Reexamination of the regulation of the biotin transport by biotin, revealed that only 50% of the biotin uptake system is under control by the vitamin.  相似文献   

    7.
    Biotin uptake has been investigated using an Escherichia coli biotin requiring auxotroph grown under biotin-deficient conditions. This strain accumulated biotin in the free and bound form. In agreement with a previous report by O. Prakash and M.A. Eisenberg (J. Bacteriol. 120 (1974) 785–791), the biotin entry proved to be an active process which depended on an energy source and was inhibited in the presence of uncouplers. The kinetic parameters have been determined (KM = 0.05 μM, Vmax = 7 pmol/min per mg dry weight). The pool of free biotin could be readily exchanged with external biotin and decreased to a very low level in the absence of an energy source. The use of several biotin analogues revealed that this transport system was quite specific for biotin: slight modifications, for instance in the valeric chain. lowered drastically the affinity for the carrier.  相似文献   

    8.
    Biotin auxotrophs were isolated from Escherichia coli K-12. One of the mutants was unable to grow on desthiobiotin and accumulated a large amount of a vitamer in medium when growing on an optimal concentration of biotin. The production of the vitamer was inhibited in the presence of an excess amount of biotin. The vitamer was identified as desthiobiotin on the basis of biological activities, avidin combinability, and chromatographic characteristics. The mutant lacked the ability to convert desthiobiotin to biotin. These results further support the hypothesis that desthiobiotin is a normal intermediate in the biosynthesis of biotin in E. coli.  相似文献   

    9.
    Bound biotin-saturated cells were incubated in the presence of biotin and glucose (37 C, pH 7.5) with or without oleic acid, Tween 20, 40, 60, and 80, Aerosol OT, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide, Triton X-100, Non-Ion-Ox, and Haemo-Sol. With low concentrations (up to 5 mug/ml) and short reaction times (up to 10 min), oleic acid stimulated free biotin accumulation. Increased concentrations (10 to 50 mug/ml) or reaction times (10 to 30 min) caused progressive reductions in uptake or increased release of previously accumulated vitamin. Combination of Tween 40 (1 mg/ml) with oleic acid (up to 50 mug/ml) detoxified oleic acid and stimulated free biotin uptake. Oleic acid (5 mug/ml or more) reduced cell viability, an effect which was overcome by Tween 40. All other surfactants tested stimulated free biotin accumulation at sublethal concentrations. Aerosol OT and SDS exhibited the same degree of stimulatory activity as detoxified oleic acid; however, at concentrations higher than 200 mum, a rapid decrease in vitamin accumulation was observed which paralleled that caused by increased oleic acid concentrations. The results suggest that oleic acid and other surfactants affect the permeability of cells of Lactobacillus plantarum (formerly called L. arabinosus) in a similar manner.  相似文献   

    10.
    Cold-osmotic-shocked cells and spheroplasts of Saccharomyces cerevisiae (ATCC 9896) display a biotin uptake system similar to that observed in intact cells. 2-Mercaptoethanol was found to inhibit biotin transport. Cells repressed for biotin uptake by growth in excess biotin (25 ng/ml) possess an energy-dependent transport system that has a K(m) for biotin of 6.6 x 10(-7) M and a V(max) equal to 39 pmol per mg (dry weight) per min. A similar K(m) (6.4 x 10(-7) M) but a considerably higher V(max) (530 pmol per mg (dry weight) per min) was determined for biotin uptake by cells grown in sufficient biotin (0.25 ng/ml). The V(max) rates of biotin uptake by both repressed and derepressed cells were increased approximately 35-fold in the presence of glucose. These yeast cells appear to regulate their biotin uptake by two mechanisms. An exit system provides for immediate adjustments, whereas turnover of the transport system and repression of new synthesis establishes a slower adaptation to changes in the environment. Feedback inhibition was ruled out as a mechanism of regulation of transport.  相似文献   

    11.
    Biotin uptake by isolated rat intestinal cells   总被引:1,自引:0,他引:1  
    Isolated intestinal mucosa cells of rats were used to investigate the intestinal transport of biotin. This method utilizing a double-label isotope technique showed that uptake could not be saturated, even in a wide range of biotin concentrations (0.01-2 microM). A metabolic inhibitor (antimycin A) did not prevent cell uptake of biotin. The transport mechanism was independent of temperature (Q10 = 1.04). When excess biotin was added to the incubation medium, there was no efflux of the vitamin from intestinal cells. The results also showed that the cells did not concentrate the vitamin, regardless of its concentration in the incubation medium. The mechanism of biotin uptake by rat cells at physiological concentrations is thus a passive diffusion phenomenon.  相似文献   

    12.
    Birnbaum, Jerome (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. IV. Degradation of biotin, oxybiotin, and desthiobiotin by Lactobacillus casei. J. Bacteriol. 92:925-930. 1966.-Lactobacillus casei degrades biotin when it is present in excess to products not utilizable for growth by L. plantarum or Saccharomyces cerevisiae. Degrading activity was initiated in the early stationary phase and was controlled by the pH of the medium. Nonproliferating cells, grown previously in excess biotin for 40 hr, metabolized oxybiotin and desthiobiotin as well as biotin. Cells grown in low biotin, or in excess biotin for 20 hr, did not degrade either analogue. Oxybiotin was 50% as active as biotin for growth, whereas desthiobiotin acted as a competitive inhibitor. Cells grown in excess biotin for 40 hr, but not 20 hr, overcame the inhibitory effect of desthiobiotin, when subcultured to media containing a normally inhibitory concentration of the analogue. Moreover, the level of desthiobiotin dropped rapidly during the first 4 to 6 hr before growth ensued. The data indicate that growth in excess biotin enables L. casei to degrade desthiobiotin and, thereby, to overcome the inhibitory effect of the analogue.  相似文献   

    13.
    Birnbaum, Jerome (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. III. Degradation of oxybiotin and desthiobiotin by Lactobacillus plantarum. J. Bacteriol 92:920-924. 1966.-Lactobacillus plantarum growing in excess oxybiotin degraded a portion to products not utilizable by Saccharomyces cerevisiae. The loss of activity for the yeast suggested that no vitamers of oxybiotin accumulated during the degradation. The initiation of degrading activity was controlled by the pH of the growth medium and appeared during early stationary phase. Only cells grown in excess oxybiotin could degrade this biotin analogue. Nonproliferating cells grown previously in excess oxybiotin were able to convert biotin to vitamers (active for the yeast) as well as to degrade oxybiotin. Those grown in excess biotin also developed the ability to degrade oxybiotin as well as to convert biotin; however, in this case, the enzymes degenerated more rapidly. Cells grown with excessive amounts of either material were able to degrade desthiobiotin to products not available for the yeast. Both biotin conversion and oxybiotin degradation were found to have the same requirements for Mg and Mn ions. It was concluded that conversion of biotin to vitamers, and the degradation of oxybiotin or desthiobiotin are functions of the same on closely related enzyme systems.  相似文献   

    14.
    Manganese was accumulated by cells of Escherichia coli by means of an active transport system quite independent of the magnesium transport system. When the radioisotope (54)Mn was used, manganese transport showed saturation kinetics with a K(m) of 2 x 10(-7)m and a V(max) of 1 to 4 nmoles/min per 10(12) cells at 25 C. The manganese transport system is highly specific; magnesium and calcium did not stimulate, inhibit, or compete with manganese for cellular uptake. Cobalt and iron specifically interfered with (54)Mn uptake, but only when added at concentrations 100 times higher than the K(m) for manganese. Active transport of manganese is temperature- and energy-dependent: uptake of (54)Mn was inhibited by cyanide, dinitrophenol, and m-chlorophenyl carbonylcyanide hydrazone (CCCP). Furthermore, the turnover or exit of manganese from intact cells was inhibited by energy poisons such as dinitrophenol and CCCP.  相似文献   

    15.
    By the addition of actithiazic acid, or acidomycin (ACM), to culture media, the accumulation of desthiobiotin by various microorganisms was enhanced from two-fold to about seventyfold, while that of biotin was markedly reduced. Especially, Bacillus sphaericus accumulated 350 μg per ml of biotin-vitamers assayed with Saccharomyces cerevisiae. ACM was not incorporated into the desthiobiotin molecule by resting cells of B. sphaericus. The amount of biotin-vitamers assayed with S. cerevisiae which was synthesized from pimelic acid by the resting cells grown with ACM was twice as great as that synthesized by the cells grown without ACM. From these results, the mechanism of the controlling action of ACM on biotin biosynthesis was discussed.  相似文献   

    16.
    The synthesis of desthiobiotin from 7,8-diaminopelargonic acid (DAP) was demonstrated in resting cell suspensions of Escherichia coli K-12 bioA mutants under conditions in which the biotin locus was derepressed. The biosynthetically formed desthiobiotin was identified by chromatography, electrophoresis, and by its ability to support the growth of yeast and those E. coli biotin auxotrophs that are blocked earlier in the biotin pathway. Optimal conditions for desthiobiotin synthesis were determined. Desthiobiotin synthetase activity was repressed 67% when partially derepressed resting cells were incubated in the presence of 3 ng of biotin per ml. Serine, bicarbonate, and glucose stimulated desthiobiotin synthesis apparently by acting as sources of CO(2). The results of this study are consistent with an earlier postulated pathway for biotin biosynthesis in E. coli: pimelic acid --> 7-oxo-8-aminopelargonic acid --> DAP --> desthiobiotin --> biotin.  相似文献   

    17.
    Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

    18.
    Desthiobiotin-tagged lentiviral vectors have been metabolically produced by DBL producer cells in a 7,8-diaminopelargonic acid (7-DAPA) dependent manner for envelope independent, single-step affinity purification. 7-DAPA, which has little or no affinity for avidin/streptavidin, was synthesised and verified by NMR spectroscopy and mass spectrometry. By expressing the biotin acceptor, biotin ligase and desthiobiotin synthase bioD, DBL cells converted exogenous 7-DAPA into membrane-bound desthiobiotin. Desthiobiotin on the DBL cell surface was visualised by confocal microscopy and the desthiobiotin density was quantified by HABA-avidin assay. Desthiobiotin was then spontaneously incorporated onto the surface of lentiviral vectors produced by the DBL cells. It has been demonstrated by flow cytometry that the desthiobiotinylated lentiviruses were captured from the crude 7-DAPA-containing viral supernatant by Streptavidin Magnespheres® and eluted by biotin solution efficiently whilst retaining infectivity. The practical, high yielding virus purification using Pierce monomeric avidin coated columns indicates a highly efficient biotin-dependent recovery of infectious lentiviruses at 68%. The recovered lentiviral vectors had a high purity and the majority were eluted within 45 min. This 7-DAPA mediated desthiobiotinylation technology can be applied in scalable production of viral vectors for clinical gene therapy.  相似文献   

    19.
    Cell-free extracts of Escherichia coli were active in catalyzing the synthesis of a biotin vitamer from 7,8-diaminopelargonic acid. The vitamer was identified as desthiobiotin on the basis of its chromatographic and electrophoretic characteristics and its biotin activities for a variety of microorganisms. The reaction was stimulated five-fold by bicarbonate, suggesting that an "active CO(2)" was incorporated into the carbonyl carbon of desthiobiotin. The enzyme was demonstrable in a wild-type (K-12) and in all biotin mutants of E. coli that were tested, with the exception of a strain which was able to grow on desthiobiotin but not on diaminopelargonic acid. Furthermore, the enzyme was repressible by biotin in all of the strains tested. These results are consistent with the hypothesis that the biosynthesis of desthiobiotin from 7,8-diaminopelargonic acid is an obligatory step in the biosynthetic pathway of biotin in E. coli.  相似文献   

    20.
    Lactobacillus casei cells have been shown previously to utilize two separate binding proteins for the transport of folate and thiamine. Folate transport, however, was found to be strongly inhibited by thiamine in spite of the fact that the folate-binding protein has no measurable affinity for thiamine. This inhibition, which did not fluctuate with intracellular adenosine triphosphate levels, occurred only in cells containing functional transport systems for both vitamins and was noncompetitive with folate but competitive with respect to the level of folate-binding protein. Folate uptake in cells containing optimally induced transport systems for both vitamins was inhibited by thiamine (1 to 10 muM) to a maximum of 45%; the latter value increased to 77% in cells that contained a progressively diminished folate transport system and a normal thiamine system. Cells preloaded with thiamine could transport folate at a normal rate, indicating that the inhibition resulted from the entry of thiamine rather than from its presence in the cell. In a similar fashion, folate (1 to 10 muM) did not interfere with the binding of thiamine to its transport protein, but inhibited thiamine transport (to a maximum of 25%). Competition also extended to biotin, whose transport was strongly inhibited (58% and 73%, respectively) by the simultaneous uptake of either folate or thiamine; biotin, however, had only a minimal effect on either folate or thiamine transport. The nicotinate transport system was unaffected by co-transport with folate, thiamine, or biotin. These results are consistent with the hypothesis that the folate, thiamine, and biotin transport systems of L. casei each function via a specific binding protein, and that they require, in addition, a common component present in limiting amounts per cell. The latter may be a protein required for the coupling of energy to these transport processes.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号