首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical mechanisms of cell damage in microcarrier cell culture bioreactors   总被引:7,自引:0,他引:7  
The negative effects of excessive agitation on tissue cells in microcarrier culture have often been ascribed to "shear." Analysis of the fluid mechanics occurring suggests that there are actually three potential damage mechanisms: collisions of a cell-covered microcarrier with other beads, collisions with parts of the reactor (primarily the impeller), and interaction with turbulent eddies the size of the microcarrier beads. Review of the available quantitative information on agitation effects in cell cultures does not establish which mechanism is predominant; the range of experimental variables reported emphasizes power input over the other reactor and impeller parameters. The bead-bead collision model is tentatively supported by the available data, but the other mechanisms may still be significant in some systems. The formation of bead aggregates by cellular bridging provides a parallel means of damaging cells. Breaking of these bridges by any of the three means identified earlier can cause cell destruction and/or the net transfer of cells to formerly bare beads. High concentrations of bridges are favored by lower agitation rates, presumably because the bridges are not as quickly destroyed after formation.  相似文献   

2.
Fluid-mechanical damage of animal cells in bioreactors.   总被引:3,自引:0,他引:3  
The fluid-mechanical and some biological aspects of damage to animal cells in bioreactors due to agitation and/or aeration are attracting renewed attention. In microcarrier bioreactors, cell damage is due to forces generated by the interaction of microcarrier beads with each other and also with small turbulent eddies. For freely suspended cells grown in mixed bioreactors, cell damage is most frequently due to bubble breakup or fast-draining liquid films around rearranging gas-liquid interfaces.  相似文献   

3.
Hydrodynamic effects on BHK cells grown as suspended natural aggregates   总被引:1,自引:0,他引:1  
Baby hamster kidney (BHK) cell aggregates grown in stirred vessels with different working volumes and impeller sizes were characterized. Using batch cultures, the range of agitation rates studied (25-100 rpm) led to aggregates with maximum sizes of 150 mum. Necrotic centers were not observed and cell specific productivity was independent of aggregate size. High cell viability was found for both single and adherent cells without an increase in cell death when agitation rate was increased. The increase in agitation rate affected aggregates by reducing their size and increasing their concentration and cell concentration in aggregates, while increasing the fraction of free cells in suspension. The experimental relationship between aggregate size and power dissipation rate per unit of mass was close to -1/4, suggesting a correlation with a critical turbulence microscale; this was independent of vessel scale and impeller geometry over the range investigated. Viscous stresses in the viscous dissipation subrange (below Kolmogoroff eddies) appear to be responsible for aggregate breakage. Under intense agitation BHK cells grown in the absence of microcarriers existed as aggregates without cell damage, whereas cells grown on the surface of microcarriers were largely reduced. This is a clear advantage for scaleup purposes if aggregates are used as a natural immobilization system in stirred vessels. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
The effects on human mesenchymal stem cell growth of choosing either of two spinner flask impeller geometries, two microcarrier concentrations and two cell concentrations (seeding densities) were investigated. Cytodex 3 microcarriers were not damaged when held at the minimum speed, NJS, for their suspension, using either impeller, nor was there any observable damage to the cells. The maximum cell density was achieved after 8–10 days of culture with up to a 20-fold expansion in terms of cells per microcarrier. An increase in microcarrier concentration or seeding density generally had a deleterious or neutral effect, as previously observed for human fibroblast cultures. The choice of impeller was significant, as was incorporation of a 1 day delay before agitation to allow initial attachment of cells. The best conditions for cell expansion on the microcarriers in the flasks were 3,000 microcarriers ml−1 (ca. 1 g dry weight l−1), a seeding density of 5 cells per microcarrier with a 1 day delay before agitation began at NJS (30 rpm), using a horizontally suspended flea impeller with an added vertical paddle. These findings were interpreted using Kolmogorov’s theory of isotropic turbulence.  相似文献   

5.
Small patches of polyethylene terephthalate (PET) nonwoven microfibrous matrices have excellent properties and can be used as carriers for culturing cells in agitated bioreactors. The microfibrous carriers are highly porous and can provide large surface areas and three‐dimensional space for high‐density cell growth. In this work, the microfibrous carriers and several commercial microcarriers were used to study cell attachment kinetics, growth, and monoclonal antibody production with Chinese hamster ovary cells. Compared with commercial solid and macroporous microcarriers, the microfibrous carriers showed better or similar performances. In addition, the microfibrous carriers provided a wider operable range for agitation rate than commercial microcarriers, effectively protecting cells from shear stress and carrier collisions. In addition, the microfibrous carriers are available at a much lower cost than commercial microcarriers, providing an attractive alternative to microcarrier‐based large‐scale cell cultures. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

6.
The effect of medium viscosity on the specific death rate of bovine embryonic kidney (BEK) cells cultured in spinner flask microcarrier cultures has been examined for various impeller speeds. Two types of media were used, a serum-containing growth medium and a serum-free maintenance medium. The latter does not support cell growth. We found that increasing medium viscosity suppresses cell death rates in both growth and maintenance medium cultures in an agitation-intensity-dependent fashion; the beneficial effect of medium viscosity in reducing the specific death rate is amplified as the agitation rate is increased. Furthermore, increasing medium viscosity has no effect on the specific death rate of the cells when the agitation rate is below a critical level. A model based on the turbulent energy content of eddies in the dissipation spectrum of turbulence of length scales on the order of magnitude of the microcarrier diameter and lower has been developed to account for cell death due to both bead-to-bead and bead-to-eddy interactions. The model constitutes a significant departure from previous efforts first because both types of interactions are accounted for simultaneously and second because the properties of a spectrum of eddies instead of the Kolmogorov-scale eddy size alone are used in the model. The model explains the functional dependence of the specific death rates on the medium viscosity at varying agitation intensities.  相似文献   

7.
Cell harvesting technique is of considerable importance in the scale-up of microcarrier culture of anchorage-dependent cells. The traditional methods are often time- and labor-consuming and cause physiological damage to the cells. Bead-to-bead cell transfer provides an attractive solution to the scale up process. By intermittent agitation, successful cell transfer was achieved. Significant cell growth was observed where bare beads contacted with confluent ones. Most of the fresh microcarriers reached near confluence four days after addition into the culture medium.  相似文献   

8.
Bead-to-bead transfer of Vero cells in microcarrier culture   总被引:2,自引:0,他引:2  
Cell harvesting technique is of considerable importance in the scale-up of microcarrier cultures of anchorage-dependent cells. The traditional methods are often time- and labor-consuming and cause physiological damage to the cells. Bead-to-bead cell transfer provides an attractive solution to the scale up process. By intermittent agitation, successful cell transfer was achieved. Significant cell growth was observed where bare beads contacted with confluent ones. Most of the fresh microcarriers reached near confluence four days after addition into the culture medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Bead-bead collisions have been characterized using the velocity of the smallest turbulent eddies to calculate a turbulent collision severity (defined as the energy of collisions times their frequency), but a shear-based collision mechanism with a different dependence on the system variables is also applicable. This shearbased mechanism and the ratio of smallest eddy size to microcarrier diameter can explain the beneficial effects of both smaller diameter microcarriers and higher viscosity of the medium on the growth rate of bovine embryonic kidney cells. Death rates of these cells have also been measured at several levels of agitation. The decrease in apparent growth rate from increasing agitation is caused both by a higher rate of cell death as well as a lower intrinsic growth rate.List of Symbols B unspecified biological variable - d cm bead diameter - d i cm impeller diameter - e error in estimate of power number - F n , F s (g·cm)/s2 normal and shear forces on a cell - Fr Froude number - g 980cm/s2 acceleration of gravity - k k–1 first order death rate constant - m g mass of a bead - n s–1 impeller rotational rate - n b number of impeller blades - N p impeller power number - R i cm impeller leading edge radius - TCS (g·cm2)/s3 turbulent collision severity - V cm3 reactor volume - v br cm/s rms relative velocity between beads - v e cm/s velocity in smallest eddies - X number of cells/cm3 cell population Greek Symbols volume fraction microcarriers - s–1 shear rate - cm2/s3 turbulent power dissipation rate - cm size of smallest eddies - g/(cm·s) dynamic viscosity - h–1 apparent growth rate of cells - 0 h–1 intrinsic growth rate of cells in absence of death - v cm2/s kinematic viscosity - b g/cm3 bead density - f g/cm3 fluid density - g/(cm·s2) shear stress  相似文献   

10.
Fenge  Christel  Klein  Cornelia  Heuer  Carsten  Siegel  Ursula  Fraune  Elisabeth 《Cytotechnology》1993,11(3):233-244
For an optimized bioreactor design which is adapted to the cultivation of sensitive animal cells different modular bioreactor components for gentle agitation, sufficient aeration and long-term perfusion were developed and investigated with respect to their suitability from laboratory to production scale. Aeration systems have been designed for both shear sensitive cells and cells which tolerate bubbles. The systems are based on either membranes for bubble-free aeration or stainless steel sparger systems. They were characterized by determination of their oxygen transfer capacity and optimized in cultivation processes of different cell lines under process conditions such as batch and perfusion mode.Different impellers for suspension cells and cells grown on carriers were investigated for their suitability to ensure homogeneous gentle mixing. A large pitch blade impeller as well as a novel 3-blade segment impeller are appropriate for homogeneous mixing at low shear rates. Especially with the 3-blade segment impeller fluid mechanical stress can be reduced at a given stirrer speed which is advantageous for the cultivation of cells attached to microcarriers or extremely shear sensitive suspension cells. However, our results indicate that shear sensitivity of animal cells has been generally overestimated.Continuous perfusion of both suspension cell cultures and cells cultivated on microcarriers could be successfully performed over extended periods of time using stainless steel spinfilters with appropriate pore sizes and systems based on microporous hydrophilic membranes. Spinfilters are suitable cell retention systems for technical scale bioreactors allowing continuous perfusion cultures of suspension cells (pore size 10 to 20 m) as well as anchorage dependent cells grown on microcarriers (pore size 75 m) over six weeks to 3 months.Applying the developed modules for agitation, aeration and perfusion process adapted bioreactor set-ups can be realized which ensure optimum growth and product formation conditions in order to maximize cell and product yields.  相似文献   

11.
Effects of microcarrier concentration in animal cell culture   总被引:1,自引:0,他引:1  
Results are presented which show how the microcarrier concentration affects the hydrodynamic environment in animal cell bioreactors. At low levels of agitation, no physical effects of microcarrier concentration were found. However, cell growth was strongly influenced by cell concentration. At high levels of agitation, a strong detrimental effect of microcarrier concentration was found. A new mechanism of hydrodynamic damage was identified which is second order in microcarrier concentration. The identification of this mechanism adds to the fundamental understanding of hydrodynamic phenomena in microcarrier bioreactors.  相似文献   

12.
Growth of Fish Cell Lines on Microcarriers   总被引:1,自引:1,他引:0       下载免费PDF全文
Microcarrier beads were evaluated as substrates for the propagation of five anchorage-dependent fish cell lines. Growth of rainbow trout gonad (RTG-2) and Atlantic salmon cells was limited on microcarriers maintained in suspension. However, stationary microcarriers were suitable substrates for the growth of RTG-2, AS, Chinook salmon embryo (CHSE-214), and fathead minnow cells. Cell yields ranged from 2 × 106 to 2.9 × 106 cells per ml, representing 7- to 10-fold increases over the initial cell concentrations. The yield of new RTG-2 cells per unit volume of growth medium was 2.8 times greater in microcarrier cultures than in standard monolayer cultures. Northern pike cells failed to grow on microcarriers. Yields of infectious pancreatic necrosis virus propagated in microcarrier cultures of RTG-2 cells were more than twice the yields in standard monolayer cultures. The greater economy of microcarrier cultures in terms of growth vessel and medium requirements holds great promise for the large-scale production of anchorage-dependent fish cell cultures and fish viruses.  相似文献   

13.
Only a decade after Van Wezel introduced the first product made in microcarrier cultures on industrial scale at economically acceptable costs, namely Inactivated Polio Vaccine (IPV), interest was taken in this revolutionary type of cell growth system. The basic idea was to develop a culture system with equal potentials for control of environmental culture conditions and scaling up as the systems used in industrial microbiology. Although initially only positively-charged beads were used it soon became clear that negatively-charged or amphoteric materials such as proteins or amino acids polymerized to the surface were equally useful. Eventually numerous different types of microcarrier were developed. The second generation of microcarriers consisted of macroporous beads providing increased surface area for cell attachment and growth by external and interior space. Such microcarriers offer great potential for high cell densities and enhanced productivity for certain production systems, especially recombinant CHO-cells. These carriers, which not only provide possibilities for anchorage-dependent cells but also for cells growing suspension, can be used in homogeneous bioreactors as well as in fluidized or fixed-bed systems. Despite considerable in vestments and research on the development and improvement of microcarriers one question is still open: is microcarrier technology still in its infancy or is it full-grown and is the basic idea relized? In this paper a general overview will be given of the present state of microcarrier technology and also of its perspectives.  相似文献   

14.
A new cell culture microcarrier that can be covalently bonded by cell attachment proteins and can be thin-sectioned for electron microscopy was synthesized. It was easily made by sulfonating cross-linked polystyrene beads for a negative surface charge followed by covalent attachment of polyethylenimine for a positive charge. Cell attachment proteins, e.g. collagen, was covalently bonded directly to the microcarrier using a carbodiimide or after activating the microcarrier surface with glutaraldehyde. HeLa-S3 cells attached, spread and grew to confluence more efficiently on the positive microcarriers and those coated with collagen than on the negative ones. Endothelial cells grew best on those with a negative surface charge. The nature of the microcarrier surface was not the only aspect involved in cell adhesion but also the type of serum proteins adsorbed. Qualitatively different proteins coated the microcarriers depending upon whether the carrier was negative, positive or coated with collagen. Comparison of various types of available microcarriers indicated that the modified cross-linked polystyrene beads used here were best for transmission and scanning electron microscopy. Endothelial cells grown on the microcarriers had the same ultrastructure as cells grown in monolayers in culture dishes. Of a variety of microcarriers tested the modified cross-linked polystyrene beads were the only ones that could be used for both ultrastructural and biochemical techniques.  相似文献   

15.
With the aim to utilize human mesenchymal stem cells (hMSCs) grown in large scale for regenerative medicine, effects of agitation rate on aggregation during beads-to-beads subcultivation of microcarrier culture of hMSCs were studied. hMSCs could attach and grew on surface-type microcarriers of Cytodex 1, whereas almost no cell elongation and growth were observed on porous type microcarriers of Cytopores. The percentages of aggregated Cytodex 1 microcarriers at an agitation rate of 60 and 90 rpm were lower than that at 30 rpm, which was the lowest agitation rate necessary for the suspension of Cytodex 1 microcarriers, and the cells grew fastest at 60 rpm. hMSC could be subcultivated on Cytodex 1 by the beads-to-beads method at both 30 and 60 rpm without trypsinization. However, agitation at 60 rpm resulted in a markedly lower percentage of aggregated microcarriers not only before but also after subcultivation. The percentages of CD90- and CD166-positive cells among cells grown on Cytodex 1 at 60 rpm (91.5 and 87.6 %) were comparable to those of cells grown in the pre-culture on dishes. In conclusion, hMSCs could be subcultivated on Cytodex 1 by beads-to-beads method maintaining the expressions of the cell surface antigens CD90 and CD166, while adjusting agitation rate could decrease the microcarrier aggregation.  相似文献   

16.
Moran E 《Cytotechnology》1999,29(2):135-149
Veterinary viral vaccines generally comprise either attenuated or chemically inactivated viruses which have been propagated on mammalian cell substrates or specific pathogen free (SPF) eggs. New generation vaccines include chemically inactivated virally-infected whole cell vaccines. The NM57 cell line is a bovine nasal turbinate persistently infected (non-lytic infection) with a strain of the respiratory syncytial virus (RSV). The potential of microcarrier technology for the cultivation in bioreactors of this anchorage dependent cell line for RSV vaccine production has been investigated. Both Cytodex 3 and Cultispher S microcarriers proved most suitable from a selection of microcarriers as growth substrates for this NM57 cell line. Maximum cell densities of 4.12×105 cells ml-1and 5.52×105 cells ml-1 respectively were obtained using Cytodex 3 (3 g l-1) and and Cultispher S (1 g l-1) in 5 l bioreactor cultures. The fact that cell growth was less sensitive to agitation rate when cultured on Cultispher S microcarriers, and that cells were efficiently harvested from this microcarrier by an enzymatic method, suggested Cultispher S is suitable for further evaluation at larger bioreactor scales (>5 l) than that described here. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
CHO-K1 cells were cultured by using a porous microcarrier. The effects of microcarrier concentration and agitation rate on cell growth in porous microcarrier cultures were investigated. The specific growth rate of 0.041 h–1 in porous microcarrier cultures was independent of both microcarrier concentration and agitation rate. By estimating the total surface area occupied by cells from the maximum cell number, it was found that not all the surface area of the porous microcarrier was utilizable for cell growth.The maximum cell number decreased with increasing the microcarrier concentration and the agitation rate. From this result, it was also found that not all the cells grown on the interior surface of the porous microcarrier were protected against mechanical damage due to agitation. The protection capacity of the porous microcarrier was estimated to be 300 cells/carrier. The direct gas sparging into the culture broth in porous microcarrier cultures improved the cell density without mechanical damage to animal cells.List of Symbols d m microcarrier diameter - d i m impeller diameter - d p m mean pore diameter - n i s–1 agitation rate - p Pa pressure difference - v m/s velocity of microcarrier - v p m/s average velocity flowing through cyclinder - Pa · s viscosity of medium - angle measured from stagnant point - Pa average shear stress - Pa shear stress distribution  相似文献   

18.
An effect of intermittent agitation on cell attachment is studied. The result of cell attachment to a microcarrier was best in the case of continuous agitation. All cells attached to microcarriers under the condition of continuous agitation for 60?min. The rate of attachment was also the highest. The positive effect on cell attachment by agitation is due to the wake around the microcarrier and some changes of structure of cell membrane.  相似文献   

19.
Bioluminescent dinoflagellates are flow-sensitive marine organisms that produce light emission almost instantaneously upon stimulation by fluid shear in a shear stress dose-dependent manner. In the present study we tested the hypothesis that monitoring bioluminescence by suspended dinoflagellates can be used as a tool to characterize cellular response to hydrodynamic forces in agitated bioreactors. Specific studies were performed to determine: (1) impeller configurations with minimum cell activation, (2) correlations of cellular response and an integrated shear factor, and (3) the effect of rapid acceleration in agitation. Results indicated that (1) at a volumetric mass transfer coefficient of 3 x 10(-4) s(-1), marine impeller configurations were less stimulatory than Rushton configurations, (2) bioluminescence response and a modified volumetric integrated shear factor had an excellent correlation, and (3) rapid acceleration in agitation was highly stimulatory, suggesting a profound effect of temporal gradients in shear in increasing cell stimulation. By using bioluminescence stimulation as an indicator of agitation-induced cell stimulation and/or damage in microcarrier cultures, the present study allows for the verification of hypotheses and development of novel mechanisms of cell damage in bioreactors.  相似文献   

20.
Cell-microcarrier adhesion to gas-liquid interfaces and foam   总被引:1,自引:0,他引:1  
The interaction of microcarriers, both with and without cells attached, with gas bubbles was studied. These studies consisted of qualitative microscopic observations of microcarriers with bubbles, quantitative measurements of microcarrier entrapment in foam, and quantitative measurements of the effect of bubble rupture at gas-medium interfaces. Ten different "protective additives" were evaluated for their ability to change the dynamic surface tension of the culture media and to prevent microcarrier adhesion to air bubbles during gas sparging and to prevent entrapment in the foam layer. These studies indicate that microcarriers, with and without cells, readily attach to gas-medium interfaces; yet unlike suspended cells, cells attached to microcarriers are not damaged by bubble ruptures at gas-medium interfaces. Only one surfactant was found to substantially prevent microcarrier entrapment in the foam layer; however, this surfactant was toxic to cells. No correlation was observed between surface tension and the prevention of microcarrier adhesion to gas-liquid interfaces. It is suggested that cell damage as a result of sparging in microcarrier cultures is the result of cells, attached to microcarriers, attaching to rising bubbles and then detaching from the microcarrier as this combination rises through the medium. It is further suggested that the hydrodynamic drag force of the rising microcarrier is sufficiently high to remove the bubble-attached cell from the microcarrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号