首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.

Background  

Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.  相似文献   

2.

Background  

The understanding of regulatory and signaling networks has long been a core objective in Systems Biology. Knowledge about these networks is mainly of qualitative nature, which allows the construction of Boolean models, where the state of a component is either 'off' or 'on'. While often able to capture the essential behavior of a network, these models can never reproduce detailed time courses of concentration levels.  相似文献   

3.
4.

Background  

Linking high-throughput experimental data with biological networks is a key step for understanding complex biological systems. Currently, visualization tools for large metabolic networks often result in a dense web of connections that is difficult to interpret biologically. The MetNetGE application organizes and visualizes biological networks in a meaningful way to improve performance and biological interpretability.  相似文献   

5.

Background  

Although Escherichia coli is one of the best studied model organisms, a comprehensive understanding of its gene regulation is not yet achieved. There exist many approaches to reconstruct regulatory interaction networks from gene expression experiments. Mutual information based approaches are most useful for large-scale network inference.  相似文献   

6.

Background  

Modern-day proteins were selected during long evolutionary history as descendants of ancient life forms. In silico reconstruction of such ancestral protein sequences facilitates our understanding of evolutionary processes, protein classification and biological function. Additionally, reconstructed ancestral protein sequences could serve to fill in sequence space thus aiding remote homology inference.  相似文献   

7.

Background  

The yeast Saccharomyces cerevisiae is an important microorganism for both industrial processes and scientific research. Consequently, there have been extensive efforts to characterize its cellular processes. In order to fully understand the relationship between yeast's genome and its physiology, the stockpiles of diverse biological data sets that describe its cellular components and phenotypic behavior must be integrated at the genome-scale. Genome-scale metabolic networks have been reconstructed for several microorganisms, including S. cerevisiae, and the properties of these networks have been successfully analyzed using a variety of constraint-based methods. Phenotypic phase plane analysis is a constraint-based method which provides a global view of how optimal growth rates are affected by changes in two environmental variables such as a carbon and an oxygen uptake rate. Some applications of phenotypic phase plane analysis include the study of optimal growth rates and of network capaCity and function.  相似文献   

8.

Background  

Machine-learning tools have gained considerable attention during the last few years for analyzing biological networks for protein function prediction. Kernel methods are suitable for learning from graph-based data such as biological networks, as they only require the abstraction of the similarities between objects into the kernel matrix. One key issue in kernel methods is the selection of a good kernel function. Diffusion kernels, the discretization of the familiar Gaussian kernel of Euclidean space, are commonly used for graph-based data.  相似文献   

9.

Background  

Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks.  相似文献   

10.

Background  

The set of extreme pathways (ExPa), {p i }, defines the convex basis vectors used for the mathematical characterization of the null space of the stoichiometric matrix for biochemical reaction networks. ExPa analysis has been used for a number of studies to determine properties of metabolic networks as well as to obtain insight into their physiological and functional states in silico. However, the number of ExPas, p = |{p i }|, grows with the size and complexity of the network being studied, and this poses a computational challenge. For this study, we investigated the relationship between the number of extreme pathways and simple network properties.  相似文献   

11.

Background  

Protein-protein interaction (PPI) is fundamental to many biological processes. In the course of evolution, biological networks such as protein-protein interaction networks have developed. Biological networks of different species can be aligned by finding instances (e.g. proteins) with the same common ancestor in the evolutionary process, so-called orthologs. For a better understanding of the evolution of biological networks, such aligned networks have to be explored. Visualization can play a key role in making the various relationships transparent.  相似文献   

12.

Background  

The amount of available biological information is rapidly increasing and the focus of biological research has moved from single components to networks and even larger projects aiming at the analysis, modelling and simulation of biological networks as well as large scale comparison of cellular properties. It is therefore essential that biological knowledge is easily accessible. However, most information is contained in the written literature in an unstructured way, so that methods for the systematic extraction of knowledge directly from the primary literature have to be deployed.  相似文献   

13.

Background  

A central question for the understanding of biological reaction networks is how a particular dynamic behavior, such as bistability or oscillations, is realized at the molecular level. So far this question has been mainly addressed in well-mixed reaction systems which are conveniently described by ordinary differential equations. However, much less is known about how molecular details of a reaction mechanism can affect the dynamics in diffusively coupled systems because the resulting partial differential equations are much more difficult to analyze.  相似文献   

14.

Background  

The study of biological networks has led to the development of increasingly large and detailed models. Computer tools are essential for the simulation of the dynamical behavior of the networks from the model. However, as the size of the models grows, it becomes infeasible to manually verify the predictions against experimental data or identify interesting features in a large number of simulation traces. Formal verification based on temporal logic and model checking provides promising methods to automate and scale the analysis of the models. However, a framework that tightly integrates modeling and simulation tools with model checkers is currently missing, on both the conceptual and the implementational level.  相似文献   

15.

Background

Computing the long term behavior of regulatory and signaling networks is critical in understanding how biological functions take place in organisms. Steady states of these networks determine the activity levels of individual entities in the long run. Identifying all the steady states of these networks is difficult due to the state space explosion problem.

Methodology

In this paper, we propose a method for identifying all the steady states of Boolean regulatory and signaling networks accurately and efficiently. We build a mathematical model that allows pruning a large portion of the state space quickly without causing any false dismissals. For the remaining state space, which is typically very small compared to the whole state space, we develop a randomized traversal method that extracts the steady states. We estimate the number of steady states, and the expected behavior of individual genes and gene pairs in steady states in an online fashion. Also, we formulate a stopping criterion that terminates the traversal as soon as user supplied percentage of the results are returned with high confidence.

Conclusions

This method identifies the observed steady states of boolean biological networks computationally. Our algorithm successfully reported the G1 phases of both budding and fission yeast cell cycles. Besides, the experiments suggest that this method is useful in identifying co-expressed genes as well. By analyzing the steady state profile of Hedgehog network, we were able to find the highly co-expressed gene pair GL1-SMO together with other such pairs.

Availability

Source code of this work is available at http://bioinformatics.cise.ufl.edu/palSteady.html twocolumnfalse]  相似文献   

16.

Background  

Modeling of molecular networks is necessary to understand their dynamical properties. While a wealth of information on molecular connectivity is available, there are still relatively few data regarding the precise stoichiometry and kinetics of the biochemical reactions underlying most molecular networks. This imbalance has limited the development of dynamical models of biological networks to a small number of well-characterized systems. To overcome this problem, we wanted to develop a methodology that would systematically create dynamical models of regulatory networks where the flow of information is known but the biochemical reactions are not. There are already diverse methodologies for modeling regulatory networks, but we aimed to create a method that could be completely standardized, i.e. independent of the network under study, so as to use it systematically.  相似文献   

17.

Background  

The elucidation of whole-cell regulatory, metabolic, interaction and other biological networks generates the need for a meaningful ranking of network elements. Centrality analysis ranks network elements according to their importance within the network structure and different centrality measures focus on different importance concepts. Central elements of biological networks have been found to be, for example, essential for viability.  相似文献   

18.

Background  

In many protein-protein interaction (PPI) networks, densely connected hub proteins are more likely to be essential proteins. This is referred to as the "centrality-lethality rule", which indicates that the topological placement of a protein in PPI network is connected with its biological essentiality. Though such connections are observed in many PPI networks, the underlying topological properties for these connections are not yet clearly understood. Some suggested putative connections are the involvement of essential proteins in the maintenance of overall network connections, or that they play a role in essential protein clusters. In this work, we have attempted to examine the placement of essential proteins and the network topology from a different perspective by determining the correlation of protein essentiality and reverse nearest neighbor topology (RNN).  相似文献   

19.

Background  

Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory.  相似文献   

20.

Background  

Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号