首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Penicillin G acylase of Escherichia coli (PGAEc) is a commercially valuable enzyme for which efficient bacterial expression systems have been developed. The enzyme is used as a catalyst for the hydrolytic production of β-lactam nuclei or for the synthesis of semi-synthetic penicillins such as ampicillin, amoxicillin and cephalexin. To become a mature, periplasmic enzyme, the inactive prepropeptide of PGA has to undergo complex processing that begins in the cytoplasm (autocatalytic cleavage), continues at crossing the cytoplasmic membrane (signal sequence removing), and it is completed in the periplasm. Since there are reports on impressive cytosolic expression of bacterial proteins in Pichia, we have cloned the leader-less gene encoding PGAEc in this host and studied yeast production capacity and enzyme authenticity.  相似文献   

3.

Background

Genome-wide expression data of gene microarrays can be used to infer gene networks. At a cellular level, a gene network provides a picture of the modules in which genes are densely connected, and of the hub genes, which are highly connected with other genes. A gene network is useful to identify the genes involved in the same pathway, in a protein complex or that are co-regulated. In this study, we used different methods to find gene networks in the ciliate Tetrahymena thermophila, and describe some important properties of this network, such as modules and hubs.

Methodology/Principal Findings

Using 67 single channel microarrays, we constructed the Tetrahymena gene network (TGN) using three methods: the Pearson correlation coefficient (PCC), the Spearman correlation coefficient (SCC) and the context likelihood of relatedness (CLR) algorithm. The accuracy and coverage of the three networks were evaluated using four conserved protein complexes in yeast. The CLR network with a Z-score threshold 3.49 was determined to be the most robust. The TGN was partitioned, and 55 modules were found. In addition, analysis of the arbitrarily determined 1200 hubs showed that these hubs could be sorted into six groups according to their expression profiles. We also investigated human disease orthologs in Tetrahymena that are missing in yeast and provide evidence indicating that some of these are involved in the same process in Tetrahymena as in human.

Conclusions/Significance

This study constructed a Tetrahymena gene network, provided new insights to the properties of this biological network, and presents an important resource to study Tetrahymena genes at the pathway level.  相似文献   

4.

Background  

Native as well as recombinant bacterial cell surface layer (S-layer) protein of Geobacillus (G.) stearothermophilus ATCC 12980 assembles to supramolecular structures with an oblique symmetry. Upon expression in E. coli, S-layer self assembly products are formed in the cytosol. We tested the expression and assembly of a fusion protein, consisting of the mature part (aa 31–1099) of the S-layer protein and EGFP (enhanced green fluorescent protein), in eukaryotic host cells, the yeast Saccharomyces cerevisiae and human HeLa cells.  相似文献   

5.
6.

Background  

The bacterial endospore (spore) has recently been proposed as a new surface display system. Antigens and enzymes have been successfully exposed on the surface layers of the Bacillus subtilis spore, but only in a few cases the efficiency of expression and the effective surface display and have been determined. We used this heterologous expression system to produce the A subunit of the urease of the animal pathogen Helicobater acinonychis. Ureases are multi-subunit enzymes with a central role in the virulence of various bacterial pathogens and necessary for colonization of the gastric mucosa by the human pathogen H. pylori. The urease subunit UreA has been recognized as a major antigen, able to induce high levels of protection against challenge infections.  相似文献   

7.

Background  

Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast.  相似文献   

8.

Background  

Although Aspergillus fumigatus is an important human fungal pathogen there are few expression systems available to study the contribution of specific genes to the growth and virulence of this opportunistic mould. Regulatable promoter systems based upon prokaryotic regulatory elements in the E. coli tetracycline-resistance operon have been successfully used to manipulate gene expression in several organisms, including mice, flies, plants, and yeast. However, the system has not yet been adapted for Aspergillus spp.  相似文献   

9.

Background  

Cloning of genes in expression libraries, such as the yeast two-hybrid system (Y2H), is based on the assumption that the loss of target genes is minimal, or at worst, managable. However, the expression of genes or gene fragments that are capable of interacting with E. coli or yeast gene products in these systems has been shown to be growth inhibitory, and therefore these clones are underrepresented (or completely lost) in the amplified library.  相似文献   

10.

Background  

A tannic acid-inducible and mycoviral-regulated laccase3 (lac 3) from the chestnut blight fungus Cryphonectria parasitica has recently been identified, but further characterization was hampered because of the precipitation of protein products by tannic acid supplementation. The present study investigated the heterologous expression of the functional laccase3 using a yeast Saccharomyces cerevisiae.  相似文献   

11.

Background  

Species of Tetrahymena were grouped into three complexes based on morphological and life history traits: the pyriformis complex of microstomatous forms; the patula complex of microstome-macrostome transformers; and the rostrata complex of facultative and obligate histophages. We tested whether these three complexes are paraphyletic using the complete sequence of the small subunit rDNA (SSrDNA).  相似文献   

12.

Background  

In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties.  相似文献   

13.
14.

Background  

Pichia pastoris is a well established yeast host for heterologous protein expression, however, the physiological and genetic information about this yeast remains scanty. The lack of a published genome sequence renders DNA arrays unavailable, thereby hampering more global investigations of P. pastoris from the beginning. Here, we examine the suitability of Saccharomyces cerevisiae DNA microarrays for heterologous hybridisation with P. pastoris cDNA.  相似文献   

15.

Background  

The budding yeast Saccharomyces cerevisiae is one of the most widely studied model organisms in aging-related science. Although several genetic modifiers of yeast longevity have been identified, the utility of this system for longevity studies has been limited by a lack of high-throughput assays for quantitatively measuring survival of individual yeast cells during aging.  相似文献   

16.

Background  

Glucose inhibition of gluconeogenic growth suppressor 2 protein (Gis2p) and zinc-finger protein 9 (ZNF9) are conserved yeast and human zinc-finger proteins. The function of yeast Gis2p is unknown, but human ZNF9 has been reported to bind nucleic acids, and mutations in the ZNF9 gene cause the neuromuscular disease myotonic dystrophy type 2. To explore the impact of these proteins on RNA regulation, we undertook a systematic analysis of the RNA targets and of the global implications for gene expression.  相似文献   

17.

Background  

In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism.  相似文献   

18.

Background  

Core histone genes are periodically expressed along the cell cycle and peak during S phase. Core histone gene expression is deeply evolutionarily conserved from the yeast Saccharomyces cerevisiae to human.  相似文献   

19.
20.

Background  

Yeast surface display is a technique, where the proteins of interest are expressed as fusions with yeast surface proteins and thus remain attached to the yeast cell wall after expression. Our purpose was to study whether allergens expressed on the cell surface of baker's yeast Saccharomyces cerevisiae preserve their native allergenic properties and whether the yeast native surface glycoproteins interfere with IgE binding. We chose to use the major allergens from the common wasp Vespula vulgaris venom: phospholipase A1, hyaluronidase and antigen 5 as the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号