首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Although IL-4 and IL-13 share the IL-13 receptor, IL-13 exhibits unique functions. To elicit the cellular basis of these differences, signal transduction processes have been compared. Additionally, the role of the IL-4 receptor alpha (IL-4Rα) variant Q551R was investigated.  相似文献   

2.

Introduction  

Interleukin-32 (IL-32) is a recently described cytokine that is a strong inducer of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, IL-1β, IL-6, and IL-8. The expression of this cytokine is highly increased in the rheumatoid synovium and correlated with the severity of joint inflammation. Little is known regarding the innate immune-related regulation of IL-32 by fibroblast-like synoviocytes (FLSs). We therefore investigated the effect of innate immune stimulation by ligands of Toll-like receptor (TLR)2, TLR3, and TLR4, and cytokines such as TNF-α and interferon (IFN)-γ, on IL-32 expression by FLSs.  相似文献   

3.

Background  

Macrophages (Mθ) play a central role in the innate immune response and in the pathology of chronic inflammatory diseases. Macrophages treated with Th2-type cytokines such as Interleukin-4 (IL-4) and Interleukin-13 (IL-13) exhibit an altered phenotype and such alternatively activated macrophages are important in the pathology of diseases characterised by allergic inflammation including asthma and atopic dermatitis. The CC chemokine Thymus and Activation-Regulated Chemokine (TARC/CCL17) and its murine homologue (mTARC/ABCD-2) bind to the chemokine receptor CCR4, and direct T-cell and macrophage recruitment into areas of allergic inflammation. Delineating the molecular mechanisms responsible for the IL-4 induction of TARC expression will be important for a better understanding of the role of Th2 cytokines in allergic disease.  相似文献   

4.
Mammalian interleukin-4 (IL-4) and IL-13 are T helper type 2 (Th2) cytokines with pleiotropic functions in immunity. They signal through receptors containing IL-4Rα and IL-2Rγ or IL-13Rα1. In addition, a decoy receptor, IL-13Rα2, is known to exist and modulates the function of IL-13. The existence of fish orthologues to mammalian IL-4 and IL-13 is still under debate. However, the receptor chains have been predicted in zebrafish, and we have previously cloned IL-2Rγ and IL-13Rα2 in rainbow trout. In this study, we have cloned a further five novel trout IL-4/13 receptors. Thus, each of the IL-4Rα, IL-13Rα1 and IL-13Rα2 chains has two copies. The identities of the receptors is supported by homology analysis, characteristic domain structure, phylogenetic tree analysis and synteny analysis in zebrafish. However, the characteristic WSXWS motif of structural importance in mammalian type I cytokine receptors is missing in all fish IL-4Rα and IL-13Rα1 molecules. All the receptors have a characteristic domain structure that is similar to their mammalian counterparts except for IL-13Rα1b that has the N-terminal Ig domain missing. Since this Ig domain is a specific and critical binding unit for IL-13 but not for IL-4 signalling, its absence potentially converts the IL-13Rα1b into a receptor that can only signal via IL-4 ligation. The existence of duplicated receptor genes perhaps suggests that more ligands still remain to be discovered that will bind these receptors. The duplicated receptors are differentially expressed in most tissues and cell lines examined, and their expression can be modulated by LPS, polyIC and IFN-γ in cell lines. In contrast, the T-cell stimulant phytohaemagglutinin increased the expression of IL-4Rα1 and IL-4Rα2, but not IL-13Rα1/2, suggesting a role of an IL-4-like molecule in T-cell growth/activation in fish.  相似文献   

5.

Introduction  

A feature of rheumatoid arthritis (RA) is an imbalance between proinflammatory and anti-inflammatory cytokines. Several recent studies have implicated polymorphism in the IL-4 signalling pathway in the development of erosive RA. The aim of the present study was to investigate the role of polymorphism in the IL-4, IL-4Rα and IL-13 genes in RA, including an examination of epistasis.  相似文献   

6.

Background

Type II activation of macrophages is known to support Th2 responses development; however, the role of Th2 cytokines (esp. IL-4) on type II activation is unknown. To assess whether the central Th2 cytokine IL-4 can alter type II activation of macrophages, we compared the ability of bone marrow-derived macrophages from wild type (WT) and IL-4Rα-deficient mice to be classically or type II-activated in vitro.

Results

We found that although both WT and IL-4Rα-deficient macrophages could be classically activated by LPS or type II activated by immune complexes plus LPS, IL-4Rα-deficient macrophages consistently produced much higher levels of IL-12p40 and IL-10 than WT macrophages. Additionally, we discovered that type II macrophages from both strains were capable of producing IL-4; however, this IL-4 was not responsible for the reduced IL-12p40 and IL-10 levels produced by WT mice. Instead, we found that derivation culture conditions (GM-CSF plus IL-3 versus M-CSF) could explain the different responses of BALB/c and IL-4Rα−/− macrophages, and these cytokines shaped the ensuing macrophage such that GM-CSF plus IL-3 promoted more IL-12 and IL-4 while M-CSF led to higher IL-10 production. Finally, we found that enhanced IL-4 production is characteristic of the type II activation state as other type II-activating products showed similar results.

Conclusions

Taken together, these results implicate type II activated macrophages as an important innate immune source of IL-4 that may play an important role in shaping adaptive immune responses.  相似文献   

7.
Many of the actions and receptor components of interleukin-13 (IL-13), a pleiotrophic cytokine with immunotherapeutic potential, are shared with IL-4. Because human low-grade astrocytoma cells express IL-4 receptors and their growth is arrested by IL-4, we speculated that IL-13 sensitivity and receptor expression might also be present. The purpose of the current study was to investigate IL-13 receptor components and sensitivity in a series of glial cell lines derived from adult human non-neoplastic cerebral cortex, low-grade astrocytoma, anaplastic astrocytoma, and glioblastoma multiforme. Unlike peripheral blood lymphocytes (PBL), glial cells did not express IL-2 receptor γ chain. IL-13 receptor α-1 (IL-13Rα1), however, was present in 11/13 glial lines and PBL. Deficient cell lines were all glioblastoma-derived. All anaplastic astrocytoma and glioblastoma but not other glial lines or PBL expressed IL-13 receptor α-2 (IL-13Rα2). In non-neoplastic glia, low-grade, and anaplastic astrocytoma, IL-13 decreased DNA synthesis, an effect reversible with antibody to IL-4Rα. Results indicate that low-grade astrocytoma cells resemble non-neoplastic glia in terms of IL-13 sensitivity and IL-4Rα/IL-13Rα1 receptor profile but alterations occur with malignant progression. Glioblastoma cells were uniformly insensitive to IL-13 and, unlike other glia, failed to phosphorylate STAT6 after IL-13 challenge. Data suggest that IL-13 and analysis of IL-13 receptors may have clinical application in glial tumors. Received: 23 December 1999 / Accepted: 24 February 2000  相似文献   

8.
Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.  相似文献   

9.
Altering the balance between pro- and anti-inflammatory responses can influence an animal’s susceptibility to acute or chronic inflammatory disease; bovine mastitis is no exception. Genetic variation in the form of single nucleotide polymorphisms (SNPs) may alter the function and expression of genes that regulate inflammation, making them important candidates for defining an animal’s risk of developing acute or chronic mastitis. The objective of the present study was to identify SNPs in genes that regulate anti-inflammatory responses and test their association with estimated breeding values (EBVs) for somatic cell score (SCS), a trait highly correlated with the incidence of mastitis. These genes included bovine interleukin-10 (IL-10) and its receptor (IL-10R), and transforming growth factor β1 (TGF-β1) and its receptor (TGF-βR). Sequencing-pooled DNA allowed for the identification of SNPs in IL-10 (n = 2), IL-10Rα (n = 6) and β (n = 2), and TGF-β1 (n = 1). These SNPs were subsequently genotyped in a cohort of Holstein (n = 500), Jersey (n = 83), and Guernsey (n = 50) bulls. Linear regression analysis identified significant SNP effects for IL-10Rα 1185C>T with SCS. Haplotype IL-10Rα AAT showed a significant effect on increasing SCS compared to the most common haplotype. The results presented here indicate that SNPs in IL-10Rα may contribute to variation in the SCS of dairy cattle. Although functional studies are necessary to ascertain whether these SNPs are causal polymorphisms or merely in linkage with the true causal SNP(s), a selection program incorporating these markers could have a beneficial influence on the average SCS and productivity of a dairy herd.  相似文献   

10.

Introduction  

Interleukin (IL)-17 plays an important role in the pathogenesis of rheumatoid arthritis and the mouse model collagen-induced arthritis (CIA). Interferon(IFN)-γ and IL-4 have been shown to suppress Th17 development in vitro, but their potential immunoregulatory roles in vivo are uncertain. The goals of this study were to determine the relationship between Th17 responses and disease severity in CIA and to assess regulation of IL-17 by endogenous IFN-γ and IL-4.  相似文献   

11.
Both interleukin-4 (IL-4) and IL-13 can bind to the shared receptor composed of the IL-4 receptor α chain and the IL-13 receptor α1 chain (IL-13Rα1); however, the mechanisms by which these ligands bind to the receptor chains are different, enabling the principal functions of these ligands to be different. We have previously shown that the N-terminal Ig-like domain in IL-13Rα1, called the D1 domain, is the specific and critical binding unit for IL-13. However, it has still remained obscure which amino acid has specific binding capacity to IL-13 and why the D1 domain acts as the binding site for IL-13, but not IL-4. To address these questions, in this study we performed mutational analyses for the D1 domain, combining the structural data to identify the amino acids critical for binding to IL-13. Mutations of Lys-76, Lys-77, or Ile-78 in c′ strand in which the crystal structure showed interaction with IL-13, and those of Trp-65 and Ala-79 adjacent to the interacting site, resulted in significant impairment of IL-13 binding, demonstrating that these amino acids generate the binding site. Furthermore, mutations of Val-35, Leu-38, or Val-42 at the N-terminal β-strand also resulted in loss of IL-13 binding, probably from decreased structural stability. None of the mutations employed here affected IL-4 binding. These results demonstrate that the D1 domain of IL-13Rα1 acts as an affinity converter, through direct cytokine interactions, that allows the shared receptor to respond differentially to IL-4 and IL-13.Interleukin-4 (IL-4)2 and IL-13 are related cytokines. IL-4 binds to a heterodimeric complex composed of the IL-4R α chain (IL-4Rα) and the common γ chain (γc), or of IL-4Rα and the IL-13R α1 chain (IL-13Rα1), called type I or type II IL-4R, respectively (1, 2). In contrast, IL-13 binds to type II IL-4R, but not type I IL-4R. Therefore, type II IL-4R is also called IL-13R. This means that IL-4 and IL-13 share the same receptor, type II IL-4R·IL-13R, which explains why IL-4 and IL-13 exert similar activities. However, the principal functions of IL-4 and IL-13 are different. As type I IL-4R is mainly expressed on hematopoietic cells, IL-4 acts on these cells, inducing Th2 differentiation in T cells and immunoglobulin class switching to IgE in B cells (1, 3). In contrast, type II IL-4R·IL-13R expresses ubiquitously, including nonhematopoietic cells, and IL-13 plays a central role in the pathogenesis of bronchial asthma by acting on these cells, including epithelial cells and fibroblasts (1, 4). Thus, it can be said that the principal role of IL-4 is an immunoregulatory cytokine, whereas that of IL-13 is an effector cytokine (5).The assembly mechanism for the binding of either IL-4 or IL-13 to type II IL-4R·IL-13R is unique. IL-4 first binds to IL-4Rα with high affinity (Kd = 1 nm), followed by recruitment of IL-13Rα1 with low affinity. In contrast, IL-13 first binds to IL-13Rα1 with low affinity (Kd = 30–37 nm), and then the complex recruits IL-4Rα, forming a high affinity receptor (Kd = 0.03–0.4 nm (6, 7)). This means that, although both IL-4 and IL-13 use IL-4Rα and IL-13Rα1, the roles of IL-4Rα and IL-13Rα1 as the primary or secondary binding unit are the opposite of those for IL-4 and IL-13. Furthermore, these differences in affinity between the ligand, the primary binding unit, and the secondary binding unit can result in that in nonhematopoietic cells on which IL-131 is expressed more abundantly than IL-4α, the number of the IL-13 receptor complex continues to rise as the IL-13 concentration increases, whereas the formation of the IL-4 receptor complex is saturated at a low IL-4 concentration. This can explain why IL-13 transduces stronger signals than IL-4 in nonhematopoietic cell such as epithelial cells and fibroblasts.We previously found that the N-terminal Ig-like domain in IL-13Rα1, called the D1 domain, is the specific and critical binding unit for IL-13, but not for IL-4, using the D1 domain-deleted IL-13Rα1 (8). LaPorte et al. recently described the crystal structure of the IL-13·IL-13Rα1·IL-4Rα, showing that the c′ strand of the D1 domain of IL-13Rα1 and the C-D strand of IL-13 generate an antiparallel β-sheet structure (7). Furthermore, this structural analysis showed that the polar bonds between IL-4 and IL-4Rα were diminished in the IL-13·IL-4Rα complex, possibly suggesting why IL-4Rα has high and no affinity with IL-4 and IL-13, respectively. These results confirmed that the unique assembly mechanism of type II IL-4R·IL-13R for IL-4 and IL-13 is dictated by the D1 domain and indicated that the c′ strand in the D1 domain is the binding site of IL-13Rα1 to IL-13. It is thought that IL-13Rα1 has evolved from γc, which does not have the extra Ig domain, acquiring the D1 domain probably from IL-2Rα or IL-15Rα (7, 9). In other words, the acquisition of the D1 domain enables the cells to respond to IL-13 in addition to IL-4. In this sense, the D1 domain appears to be an affinity converter that has evolved differential interactions with IL-4 and IL-13 to respond to the two cytokines distinctly, based on receptor expression levels and cytokine concentration. Thus, the evolution of distinct interactions of D1 with IL-4 versus IL-13 is an unprecedented example of divergent evolution of function of the same structure. Interestingly, in the structural study, it was observed that the c′ strand of the D1 domain of IL-13Rα1 can also generate an antiparallel β-sheet structure with IL-4 that appears similar to that of IL-13 (7), leaving open the question of whether it is energetically important for IL-13 but not IL-4, and whether direct interactions are required.From these studies, several questions remain unresolved. The structures did not make it clear if this differential effect is indirect, or through direct interaction with the cytokines. Are the c′ contacts with cytokines energetically important and distinct for IL-4 and IL-13? If this is the case, then the second question is which amino acid in the c′ strand has specific binding capacity to IL-13. The third question is why does this portion act as the binding site specific for IL-13, but not IL-4. To address these questions, we took advantage of the mutational approach for the D1 domain, combining data from the structural study, and identified the amino acids critical for binding to IL-13.  相似文献   

12.
The closely related Th2 cytokines, IL-4 and IL-13, share many biological functions that are considered important in the development of allergic airway inflammation and airway hyperresponsiveness (AHR). The overlap of their functions results from the IL-4R alpha-chain forming an important functional signaling component of both the IL-4 and IL-13 receptors. Mutations in the C terminus region of the IL-4 protein produce IL-4 mutants that bind to the IL-4R alpha-chain with high affinity, but do not induce cellular responses. A murine IL-4 mutant (C118 deletion) protein (IL-4R antagonist) inhibited IL-4- and IL-13-induced STAT6 phosphorylation as well as IL-4- and IL-13-induced IgE production in vitro. Administration of murine IL-4R antagonist during allergen (OVA) challenge inhibited the development of allergic airway eosinophilia and AHR in mice previously sensitized with OVA. The inhibitory effect on airway eosinophilia and AHR was associated with reduced levels of IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluid as well as reduced serum levels of OVA-IGE: These observations demonstrate the therapeutic potential of IL-4 mutant protein receptor antagonists that inhibit both IL-4 and IL-13 in the treatment of allergic asthma.  相似文献   

13.
The objectives ofthis study were to determine whether rat aortic smooth muscle cells(RASMC) express arginase and to elucidate the possible mechanismsinvolved in the regulation of arginase expression. The results showthat RASMC contain basal arginase I (AI) activity, which issignificantly enhanced by stimulating the cells with either interleukin(IL)-4 or IL-13, but arginase II (AII) expression was not detectedunder any condition studied here. We further investigated the signaltransduction pathways responsible for AI induction. AI mRNA and proteinlevels were enhanced by addition of forskolin (1 µM) and inhibited byH-89 (30 µM), suggesting positive regulation of AI by aprotein kinase A pathway. Genistein (10 µg/ml) and sodiumorthovanadate (Na3VO4; 10 µM) were used toinvestigate the role of tyrosine phosphorylation in the control of AIexpression. Genistein inhibited, whereas Na3VO4enhanced the induction of AI by IL-4 or IL-13. Along with immunoprecipitation and immunoblot analyses, these data implicate theJAK/STAT6 pathway in AI regulation. Dexamethasone (Dex) and interferon(IFN)- were investigated for their effects on AI induction. Dex (1 µM) and IFN- (100 U/ml) alone had no effect on basal AI expressionin RASMC, but both reduced AI induction by IL-4 and IL-13. Incombination, Dex and IFN- abolished AI induction by IL-4 and IL-13.Finally, both IL-4 and IL-13 significantly increased RASMC DNAsynthesis as monitored by [3H]thymidine incorporation,demonstrating that upregulation of AI is correlated with an increase incell proliferation. Blockade of AI induction by IFN-, H-89, orgenistein also blocked the increase in cell proliferation. Theseobservations are consistent with the possibility that upregulation ofAI might play an important role in the pathophysiology of vasculardisorders characterized by excessive smooth muscle growth.

  相似文献   

14.
The interleukin-4 (IL-4) signalling cascade has been identified as a pathway potentially important in the development of asthma. Genetic variants within this signalling pathway might contribute to the risk of developing asthma in a given individual. A number of polymorphisms have been described within the IL-4 receptor α (IL-4Rα) gene. In addition polymorphism occurs in the promoter for the IL-4 gene itself. This commentary accompanies a paper by C Oberet al describing the contribution of IL-4Rα polymorphism to susceptibility to asthma and atopy in the Hutterite population and other outbred populations collected during the collaborative studies on the genetics of asthma (CSGA) programme.  相似文献   

15.
Interleukin-7 receptor α chain (IL-7Rα)-derived signals are critical for normal T cell development, mature T cell homeostasis, and longevity of memory T cells. IL-7Rα expression in T cells is dynamically regulated at different developmental and antigen-responding stages. However, the molecular mechanism underlying the dynamic regulation is not completely understood. Here we describe generation of a bacterial artificial chromosome (BAC)-based reporter transgenic mouse strain, which contains 210 kb DNA sequence flanking the Il7r locus. We used in vitro validated EGFP reporter and insulator sequences to facilitate the reporter transgene expression. Consistent with endogenous IL-7Rα expression, the BAC transgene was expressed in mature T cells, a portion of natural killer cells but not in mature B cells. In the thymus, the EGFP reporter and endogenous IL-7Rα showed synchronized silencing in CD4+CD8+ double positive stage, were both upregulated in CD4+ or CD8+ single positive thymocytes, and both continued to be co-expressed in na?ve T cells in the periphery. Upon encountering antigen, the antigen-specific effector CD8+ T cells downregulated both endogenous IL-7Rα and the EGFP reporter, which were upregulated in synchrony in antigen-specific memory CD8 T cells. These results indicate that the BAC-EGFP transgene reports endogenous IL-7Rα regulation with high fidelity, and further suggest that the 210 kb sequence flanking the Il7r locus contains sufficient genetic information to regulate its expression changes in T lineage cells. Our approach thus represents a critical initial step towards systematic dissection of the cis regulatory elements controlling dynamic IL-7Rα regulation during T cell development and cellular immune responses.  相似文献   

16.

Background

Th2 cell activation and T regulatory cell (Treg) deficiency are key features of allergy. This applies for asthma and rhinitis. However with a same atopic background, some patients will develop rhinitis and asthma, whereas others will display rhinitis only. Co-receptors are pivotal in determining the type of T cell activation, but their role in allergic asthma and rhinitis has not been explored. Our objective was to assess whether allergen-induced T cell activation differs from allergic rhinitis to allergic rhinitis with asthma, and explore the role of ICOS, CD28 and CTLA-4.

Methods

T cell co-receptor and cytokine expressions were assessed by flow cytometry in PBMC from 18 house dust mite (HDM) allergic rhinitics (R), 18 HDM allergic rhinitics and asthmatics (AR), 13 non allergic asthmatics (A) and 20 controls, with or without anti-co-receptors antibodies.

Results

In asthmatics (A+AR), a constitutive decrease of CTLA-4+ and of CD4+CD25+Foxp3+ cells was found, with an increase of IFN-γ+ cells. In allergic subjects (R + AR), allergen stimulation induced CD28 together with IL-4 and IL-13, and decreased the proportion of CTLA-4+, IL-10+ and CD4+CD25+Foxp3+ cells. Anti-ICOS and anti-CD28 antibodies blocked allergen-induced IL-4 and IL-13. IL-13 production also involved CTLA-4.

Conclusions

T cell activation differs between allergic rhinitis and asthma. In asthma, a constitutive, co-receptor independent, Th1 activation and Treg deficiency is found. In allergic rhinitis, an allergen-induced Treg cell deficiency is seen, as well as an ICOS-, CD28- and CTLA-4-dependent Th2 activation. Allergic asthmatics display both characteristics.  相似文献   

17.
Eotaxin potentiates antigen-dependent basophil IL-4 production.   总被引:2,自引:0,他引:2  
Basophils are a major source of IL-4, which is a critical factor in the generation of allergic inflammation. Eotaxin induces chemotaxis mediated through the CC chemokine receptor 3 (CCR3) present on basophils as well as eosinophils and Th2 cells, thereby promoting cell recruitment. To determine whether eotaxin has other proinflammatory activity, we examined the effect of eotaxin on basophil IL-4 expression by flow cytometry. Eotaxin alone had no effect on basophil IL-4 production, but further increased allergen-stimulated IL-4 expression. Eotaxin also enhanced IL-4 release from purified basophils 2- to 4-fold, as determined by ELISA (p < 0.01). Addition of eotaxin to cultures resulted in a 40-fold left shift in the dose response to Ag. This effect was obtained with physiologic concentrations of eotaxin (10 ng/ml), was abrogated by an Ab to the CCR3 receptor, and was noted with other chemokine ligands of CCR3. Additionally, eotaxin augmented IL-3 priming of basophil IL-4 production in a synergistic manner (p < 0.01). In contrast, no priming was observed with either IL-5 or GM-CSF. These results establish a novel function for eotaxin and other chemokine ligands of CCR3: the potentiation of Ag-mediated IL-4 production in basophils, and suggest a potential nonchemotactic role for CC chemokines in the pathogenesis and amplification of inflammation.  相似文献   

18.
19.

Introduction  

We recently described the ability of retinoid X receptor (RXR) ligand LG100268 (LG268) to inhibit interleukin-1-beta (IL-1-β)-driven matrix metalloproteinase-1 (MMP-1) and MMP-13 gene expression in SW-1353 chondrosarcoma cells. Other investigators have demonstrated similar effects in chondrocytes treated with rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARγ), for which RXR is an obligate dimerization partner. The goals of this study were to evaluate the inhibition of IL-1-β-induced expression of MMP-1 and MMP-13 by combinatorial treatment with RXR and PPARγ ligands and to investigate the molecular mechanisms of this inhibition.  相似文献   

20.

Introduction  

In addition to its direct proinflammatory activity, extracellular high mobility group box protein 1 (HMGB1) can strongly enhance the cytokine response evoked by other proinflammatory molecules, such as lipopolysaccharide (LPS), CpG-DNA and IL-1β, through the formation of complexes. Extracellular HMGB1 is abundant in arthritic joint tissue where it is suggested to promote inflammation as intra-articular injections of HMGB1 induce synovitis in mice and HMGB1 neutralizing therapy suppresses development of experimental arthritis. The aim of this study was to determine whether HMGB1 in complex with LPS, interleukin (IL)-1α or IL-1β has enhancing effects on the production of proinflammatory mediators by rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). Furthermore, we examined the toll-like receptor (TLR) 4 and IL-1RI requirement for the cytokine-enhancing effects of the investigated HMGB1-ligand complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号