首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The replacement of Escherichia coli recA gene (recAEc) with the Pseudomonas aeruginosa recAPa gene in Escherichia coli cells results in constitutive hyper-recombination (high frequency of recombination exchanges per unit length of DNA) in the absence of constitutive SOS response. To understand the biochemical basis of this unusual in vivo phenotype, we compared in vitro the recombination properties of RecAPa protein with those of RecAEc protein. Consistent with hyper-recombination activity, RecAPa protein appeared to be more proficient both in joint molecule formation, producing extensive DNA networks in strand exchange reaction, and in competition with single-stranded DNA binding (SSB) protein for single-stranded DNA (ssDNA) binding sites. The RecAPa protein showed in vitro a normal ability for cleavage of the E. coli LexA repressor (a basic step in SOS regulon derepression) both in the absence and in the presence (i.e. even under suboptimal conditions for RecAEc protein) of SSB protein. However, unlike other hyper-recombinogenic proteins, such as RecA441 and RecA730, RecAPa protein displaced insufficient SSB protein from ssDNA at low magnesium concentration to induce the SOS response constitutively. In searching for particular characteristics of RecAPa in comparison with RecAEc, RecA441 and RecA803 proteins, RecAPa showed unusually high abilities: to be resistant to the displacement by SSB protein from poly(dT); to stabilize a ternary complex RecA::ATP::ssDNA to high salt concentrations; and to be much more rapid in both the nucleation of double-stranded DNA (dsDNA) and the steady-state rate of dsDNA-dependent ATP hydrolysis at pH 7.5. We hypothesized that the high affinity of RecAPa protein for ssDNA, and especially dsDNA, is the factor that directs the ternary complex to bind secondary DNA to initiate additional acts of recombination instead of to bind LexA repressor to induce constitutive SOS response.  相似文献   

4.
The recA gene of Aquaspirillum magnetotacticum has been isolated from a genomic library and introduced into a recA mutant strain of Escherichia coli K12. The cloned gene complemented both the recombination and DNA repair deficiency of the host and its protein product promoted the proteolytic cleavage of the LexA protein. A protein whose molecular weight is similar to that of the RecA protein of E. coli was associated with the cloned sequence.This paper is affectionately dedicated to Prof. John L. Ingraham  相似文献   

5.
Plasmid pUC19-recAoc carrying a mutant allele of the recA gene, which plays the key role in the control of the SOS repair system and homologous recombinational repair, causes a 1.5-fold increase in radiation resistance of Escherichia coli ΔrecA cells, as compared to the wild-type recA + cells. The protective effect of this plasmid is drastically reduced in mutant lexA3 recAΔ21 deficient in the LexA protein and in induction of the SOS regulon. Plasmid pUC19-recAoc effectively suppresses UV sensitivity of the ΔrecA mutant. Mutation recAo20 allows constitutive high-level synthesis of the RecA protein. This mutation impairs the SOS box in the operator site of the recA gene and enhances heterology of the dimer LexA binding site. These data confirm that high level of the RecA protein synthesis per se is not sufficient for the expression of γ-inducible functions and that the derepression of lexA-dependent genes, other than recA gene, is necessary for the complete induction of the SOS repair system.  相似文献   

6.
7.
Quantitative evaluation of recA gene expression in Escherichia coli   总被引:29,自引:0,他引:29  
Summary A recA::lac operon fusion was constructed using the phage Mu d(Ap, lac) in Escherichia coli to obtain precise measurements of the level of recA gene expression in various genetic backgrounds. The RecA protein normally represents 0.02% of total protein. This value is known to increase dramatically after treatments interrupting DNA synthesis; kinetic experiments showed that the rate of recA expression increases 17-fold within 10 min after UV irradiation or thymine starvation. In mutants affected in SOS regulation or repair the following observations were made: (i) the tif-1 mutation in the recA gene does not alter the basal level of recA expression, suggesting that it improves the protease activity of RecA; (ii) the lexA3 mutation does not create a super-repressor of recA; (iii) the tsl-1 mutation in the lexA gene makes the LexA protein a poor repressor of recA at 30°C (2.5-fold derepression) and a poor substrate for RecA protease (3-fold stimulation of recA expression by UV); (iv) the spr-55 amber mutation in the lexA gene causes a 30-fold increase in recA expression, higher than all inducing treatments, and this level cannot be further increased by nalidixic acid; (v) the zab-53 mutation at the recA locus, known to abolish tsl-mediated induction of recA expression, is trans-recessive and thus probably affects a regulatory site on the DNA; (vi) uvrA, B and C, recB and recF mutations do not increase the basal level of recA expression, suggesting that there are not sufficient spontaneous lesions to cause induction even when any one of these three repair pathways is inoperative.Abbreviations Ap ampicillin - Km kanamycin - Cm chloramphenicol - Tc terracycline - Sm streptomycin - Ts thermosensitive - Tr thermoresistant - Nal nalidixic acid - X-Gal 5-bromo-4-chloro-3-indolyl--D-galactoside - mito C mitomycin C - LFT low frequency transducing - HFT high frequency transducing  相似文献   

8.
9.
Summary The mechanism of the inhibition and of the recovery of DNA synthesis in E. coli following UV-irradiation was analysed in several mutants defective in repair or in the regulation of the RecA-LexA dependent SOS response. Several lines of evidence indicated that inhibition is not an inducible function and is probably due to the direct effect of lesions in the template blocking replisome movement.Recovery of DNA synthesis after UV was largely unaffected by mutations in the uvrA, recB or umuC genes. Resumption of DNA synthesis does however require protein synthesis and the regulatory action of recA. Experiments with a recA constitutive mutant and recA 200 (temperature sensitive RecA) demonstrated that RecA protein itself is directly required but is not sufficient for recovery of DNA synthesis. We therefore propose that recovery of DNA synthesis depends upon the concerted activity of RecA and the synthesis of an inducible Irr (induced replisome reactivation) factor under RecA control. We suggest that the mechanism of recovery involves the action of Irr and RecA to promote movement of replisomes past non-instructive lesions, uncoupled from polymerisation and/or that Irr and RecA are required to promote re-initiation of a stalled replication complex downstream of a UV-lesion subsequent to such an uncoupling step.  相似文献   

10.
Summary Derivatives of Escherichia coli K-12 carrying a deletion of the recA gene survive exposure to UV (254 nm) better if they also contain the lexA41 mutation which codes for a labile LexA protein. This effect of the lexA41 mutation is not observed in comparable strains carrying a uvr A6 mutation. Using two independent methods to detect pyrimidine dimers we found that UV irradiated RecA deficient cells removed dimers from their DNA more rapidly if they contained the lexA41 mutation than if the contained the wild-type lexA gene. Our results are consistent with the idea that a relatively high level of UvrABC incision nuclease resulting from inefficient repression of the corresponding genes by the labile LexA41 protein facilitates excision of pyrimidine dimers from the DNA of UV irradiated cells.  相似文献   

11.
12.
Summary The phenotype of the recA1730 mutant is highly dependent on the level of expression of the RecA1730 protein. If the recA1730 gene was expressed from its own promoter, the cells were deficient in recombination and SOS induction. In contrast, when the recA1730 gene was expressed under the control of recAo98, a constitutive operator that increased the RecA1730 concentration 20-fold, cells became proficient in recombination and SOS induction. Likewise, in crude extracts, fivefold more RecA1730 than RecAwt was required to produce full cleavage of LexA protein. The requirement for a high RecA1730 concentration for recombination and LexA cleavage suggests that the recA1730 defect alters a common reaction step. In fact, in vitro data show that the impaired assembly of RecA1730 protein on single-stranded DNA (ssDNA) can account for the mutant phenotype. Purified RecA1730 protein was assayed in vitro for ssDNA binding and ATPase activities. RecA1730, like RecAwt, retained ssDNA equally well on nitrocellulose filters; this activity was specifically inhibited by a monoclonal anti-RecA antibody. However, RecA1730 protein did not form complete filaments on ssDNA, as shown by two observations: (i) most of the protein did not elute with ssDNA during gel filtration; and (ii) binding of RecA1730 to ssDNA did not protect it from being digested by DNaseI. RecA1730 hydrolysed ATP in high salt but was defective in ssDNA-dependent ATP hydrolysis. These results strongly suggest that RecA1730 binds to ATP and ssDNA but does not form normal nucleoprotein filaments.Abbreviations RecAwt RecA wind-type protein - ssDNA singlestranded DNA - dsDNA dmble-stranded DNA  相似文献   

13.
Summary The temperature sensitive allele recA200 has been cloned into the multiple copy number plasmid pBR322 and the gene product isolated. The purified RecA200 protein is temperature sensitive in ability to cleave the phage and LexA repressors in vitro and also in ability to promote a successful search for homology between single stranded DNA and a homologous duplex leading to D-loop formation. However, at the non-permissive temperature the RecA200 protein has approximately wild type single stranded DNA dependent ATPase activity and ability to promote pairing between homologous single DNA strands. The demonstration that the temperature sensitivity in vivo can be correlated with the temperature sensitive cleavage of the and LexA repressors in vitro and also with D-loop formation shows that these in vitro reactions, which require large amounts of RecA protein, are not carried out by trace amounts of contaminating proteins.  相似文献   

14.
15.
Pretreatment with 2.5mm H2O2 protects bacterial cells against UV killing, a phenomenon that is independent of the SOS response. This protection possibly involves the induction of some other DNA repair mechanism, sincelexA (Ind) mutants pretreated with this concentration of H2O2 enhance the repair of UV-damaged phages. Moreover, the induction of this DNA repair mechanism is independent of theoxyR regulon. However, the repair of UV-damaged phages is not enhanced inrecA anduvrA mutants, suggesting a DNA repair mechanism independent of LexA cleavage or OxyR activation, but dependent on RecA and UvrA proteins.  相似文献   

16.
Summary The cloned recA + gene of Proteus mirabilis substitutes for a defective RecA protein in Escherichia coli recA mutants, and restores recombination, repair and phage induction functions to near normal levels. In a previous report, we described the purification and charactrisation of the recombination activities of the P. mirabilis RecA protein (West et al. 1983b). In this paper, we show that the purified protein catalyses the cleavage of both the Escherichia coli LexA protein and the bacteriophage lambda repressor in vitro. These results provide a direct biochemical basis for the interspecies complementation observed in vivo and suggest that P. mirabilis has an SOS regulatory network similar to that of E. coli.  相似文献   

17.
The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30+-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction.  相似文献   

18.
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium mehloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 by upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactived in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.  相似文献   

19.
Restoration of RecA protein activity by genetic complementation   总被引:7,自引:0,他引:7  
Summary Bacteria carrying either recA430 or recA453-441 mutations are sensitive to UV-irradiation since they amplify the synthesis of RecA protein either poorly or not at all. We show here that, in a recA453-441 (recA430) heterodiploid, UV-resistance and amplification of RecA430 protein were restored, indicating that the cellular level of RecA-associated protease activity was high enough to inactivate LexA repressor. Prophage 434 repressor was also extensively inactivated, whereas RecA430 protein alone cannot cleave this substrate. On the other hand, during growth of the recA453-441(recA430) heterodiploid at 42° C in the presence of adenine, a treatment activating only RecA441 protein, RecA441 protease activity was as high as in a recA441 haploid. In contrast, following this inducing treatment, there was no complementation between RecA441 and RecA+ proteins in a recA453-441(recA +) heterodiploid. These results indicate that multimerization of RecA protein molecules results in a functional interaction that, in some combination between RecA protein subunits, may enhance RecA-associated protease activity.Obra Social de la Caja de Ahorros de Valencia  相似文献   

20.
The RecA protein is a key enzyme involved in DNA recombination in bacteria. Using a polymerase chain reaction (PCR) amplification we cloned arecA homolog fromHelicobacter pylori. The gene revealed an open reading frame (ORF) encoding a putative protein of 37.6 kDa showing closest homology to theCampylobacter jejuni RecA (75.5% identity). A putative ribosome binding site and a near-consensus σ70 promoter sequence was found upstream ofrec A. A second ORF, encoding a putative protein with N-terminal sequence homology to prokaryotic and eukaryotic enolases, is located directly downstream ofrecA. Compared to the wild-type strains, isogenicH. pylori recA deletion mutants of strains 69A and NCTC11637 displayed increased sensitivity to ultraviolet light and abolished general homologous recombination. The recombinantH. pylori RecA protein produced inEscherichia coli strain GC6 (recA ) was 38 kDa in size but inactive in DNA repair, whereas the corresponding protein inH. pylori 69A migrated at the greater apparent molecular weight of approx. 40 kDa in SDS-polyacrylamide gels. However, complementation of theH. pylori mutant using the clonedrecA gene on a shuttle vector resulted in a RecA protein of the original size and fully restored the general functions of the enzyme. These data can be best explained by a modification of RecA inH. pylori which is crucial for its function. The potential modification seems not to occur when the protein is produced inE. coli, giving rise to a smaller but inactive protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号