首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

A major part of horizontal gene transfer that contributes to the diversification and adaptation of bacteria is facilitated by genomic islands. The evolution of these islands is poorly understood. Some progress was made with the identification of a set of phylogenetically related genomic islands among the Proteobacteria, recognized from the investigation of the evolutionary origins of a Haemophilus influenzae antibiotic resistance island, namely ICEHin1056. More clarity comes from this comparative analysis of seven complete sequences of the ICEHin1056 genomic island subfamily.

Results

These genomic islands have core and accessory genes in approximately equal proportion, with none demonstrating recent acquisition from other islands. The number of variable sites within core genes is similar to that found in the host bacteria. Furthermore, the GC content of the core genes is similar to that of the host bacteria (38% to 40%). Most of the core gene content is formed by the syntenic type IV secretion system dependent conjugative module and replicative module. GC content and lack of variable sites indicate that the antibiotic resistance genes were acquired relatively recently. An analysis of conjugation efficiency and antibiotic susceptibility demonstrates that phenotypic expression of genomic island-borne genes differs between different hosts.

Conclusion

Genomic islands of the ICEHin1056 subfamily have a longstanding relationship with H. influenzae and H. parainfluenzae and are co-evolving as semi-autonomous genomes within the 'supragenomes' of their host species. They have promoted bacterial diversity and adaptation through becoming efficient vectors of antibiotic resistance by the recent acquisition of antibiotic resistance transposons.  相似文献   

2.

Background  

Analysis of large scale diversity in bacterial genomes has mainly focused on elements such as pathogenicity islands, or more generally, genomic islands. These comprise numerous genes and confer important phenotypes, which are present or absent depending on strains. We report that despite this widely accepted notion, most diversity at the species level is composed of much smaller DNA segments, 20 to 500 bp in size, which we call microdiversity.  相似文献   

3.

Background

Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general.

Results

In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species.

Conclusions

Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-440) contains supplementary material, which is available to authorized users.  相似文献   

4.
The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.  相似文献   

5.
As stated by the island rule, small mammals evolve toward gigantism on islands. In addition they are known to evolve faster than their mainland counterparts. Body size in island mammals may also be influenced by geographical climatic gradients or climatic change through time. We tested the relative effects of climate change and isolation on the size of the Japanese rodent Apodemus speciosus and calculated evolutionary rates of body size change since the last glacial maximum (LGM). Currently A. speciosus populations conform both to Bergmann's rule, with an increase in body size with latitude, and to the island rule, with larger body sizes on small islands. We also found that fossil representatives of A. speciosus are larger than their extant relatives. Our estimated evolutionary rates since the LGM show that body size evolution on the smaller islands has been less than half as rapid as on Honshu, the mainland-type large island of Japan. We conclude that island populations exhibit larger body sizes today not because they have evolved toward gigantism, but because their evolution toward a smaller size, due to climate warming since the LGM, has been decelerated by the island effect. These combined results suggest that evolution in Quaternary island small mammals may not have been as fast as expected by the island effect because of the counteracting effect of climate change during this period.  相似文献   

6.

Background  

The potential adaptive significance of transposable elements (TEs) to the host genomes in which they reside is a topic that has been hotly debated by molecular evolutionists for more than two decades. Recent genomic analyses have demonstrated that TE fragments are associated with functional genes in plants and animals. These findings suggest that TEs may contribute significantly to gene evolution.  相似文献   

7.
The availability of multiple bacterial genome sequences has revealed a surprising extent of variability among strains of the same species. The human gastric pathogen Helicobacter pylori is known as one of the most genetically diverse species. We have compared the genome sequence of the duodenal ulcer strain P12 and six other H. pylori genomes to elucidate the genetic repertoire and genome evolution mechanisms of this species. In agreement with previous findings, we estimate that the core genome comprises about 1200 genes and that H. pylori possesses an open pan-genome. Strain-specific genes are preferentially located at potential genome rearrangement sites or in distinct plasticity zones, suggesting two different mechanisms of genome evolution. The P12 genome contains three plasticity zones, two of which encode type IV secretion systems and have typical features of genomic islands. We demonstrate for the first time that one of these islands is capable of self-excision and horizontal transfer by a conjugative process. We also show that excision is mediated by a protein of the XerD family of tyrosine recombinases. Thus, in addition to its natural transformation competence, conjugative transfer of genomic islands has to be considered as an important source of genetic diversity in H. pylori.  相似文献   

8.

Background

Haloquadratum walsbyi represents up to 80 % of cells in NaCl-saturated brines worldwide, but is notoriously difficult to maintain under laboratory conditions. In order to establish the extent of genetic diversity in a natural population of this microbe, we screened a H. walsbyi enriched metagenomic fosmid library and recovered seven novel version of its cell-wall associated genomic island. The fosmid inserts were sequenced and analysed.

Results

The novel cell-wall associated islands delineated two major clades within H. walsbyi. The islands predominantly contained genes putatively involved in biosynthesis of surface layer, genes encoding cell surface glycoproteins and genes involved in envelope formation. We further found that these genes are maintained in the population and that the diversity of this region arises through homologous recombination but also through the action of mobile genetic elements, including viruses.

Conclusions

The population of H. walsbyi in the studied saltern brine is composed of numerous clonal lineages that differ in surface structures including the cell wall. This type of variation probably reflects a number of mechanisms that minimize the infection rate of predating viruses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1794-8) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background  

Pathogenicity islands (PAIs), distinct genomic segments of pathogens encoding virulence factors, represent a subgroup of genomic islands (GIs) that have been acquired by horizontal gene transfer event. Up to now, computational approaches for identifying PAIs have been focused on the detection of genomic regions which only differ from the rest of the genome in their base composition and codon usage. These approaches often lead to the identification of genomic islands, rather than PAIs.  相似文献   

10.
MOTIVATION: Some genomic islands contain horizontally transferred genes, which play critical roles in altering the genotypes and phenotypes of organisms, and horizontal gene transfer has been recognized as a universal event throughout bacterial evolution. A windowless method to display the distribution of genomic GC content, the cumulative GC profile, is proposed to identify genomic islands in genomes whose complete genome sequences are available. Two new indices are proposed to assess the codon usage bias and amino acid usage bias in genomic islands. RESULTS: A 211 kb genomic island (CGGI-1) has been identified in the genome of Corynebacterium glutamicum, and three genomic islands VVGI-1, VVGI-2 and VVGI-3, with lengths 167, 40 and 33 kb, respectively, have been identified in the genome of Vibrio vulnificus CMCP6 chromosome I. The CGGI-1 is flanked by two approximately 500 bp direct repeats, and utilizes a Val-tRNA as the integration site. For the VVGI-1 and VVGI-2, each has an integrase gene at 5' junction. All the identified genomic islands show unusual GC content, codon usage and amino acid usage, compared with the rest of the genomes. In addition, it is found that genomic islands are fairly homogenous in terms of GC content variation. An index, h, to quantify the homogeneity of GC content for genomic islands is proposed, and it is shown that h is less than 0.1 for all the genomic islands analyzed. The cumulative GC profile, as well as various indices to assess the codon usage bias, amino acid usage bias and homogeneity of the genomic islands, will be useful in the analysis of other genomes. AVAILABILITY: Programs used in this work and numerical results are available upon request.  相似文献   

11.

Background

It has been noted that many bacterial virulence factor genes are located within genomic islands (GIs; clusters of genes in a prokaryotic genome of probable horizontal origin). However, such studies have been limited to single genera or isolated observations. We have performed the first large-scale analysis of multiple diverse pathogens to examine this association. We additionally identified genes found predominantly in pathogens, but not non-pathogens, across multiple genera using 631 complete bacterial genomes, and we identified common trends in virulence for genes in GIs. Furthermore, we examined the relationship between GIs and clustered regularly interspaced palindromic repeats (CRISPRs) proposed to confer resistance to phage.

Methodology/Principal Findings

We show quantitatively that GIs disproportionately contain more virulence factors than the rest of a given genome (p<1E-40 using three GI datasets) and that CRISPRs are also over-represented in GIs. Virulence factors in GIs and pathogen-associated virulence factors are enriched for proteins having more “offensive” functions, e.g. active invasion of the host, and are disproportionately components of type III/IV secretion systems or toxins. Numerous hypothetical pathogen-associated genes were identified, meriting further study.

Conclusions/Significance

This is the first systematic analysis across diverse genera indicating that virulence factors are disproportionately associated with GIs. “Offensive” virulence factors, as opposed to host-interaction factors, may more often be a recently acquired trait (on an evolutionary time scale detected by GI analysis). Newly identified pathogen-associated genes warrant further study. We discuss the implications of these results, which cement the significant role of GIs in the evolution of many pathogens.  相似文献   

12.

Background  

Many small vertebrates on islands grow larger, mature later, lay smaller clutches/litters, and are less sexually dimorphic and aggressive than their mainland relatives. This set of observations is referred to as the 'Island Syndrome'. The syndrome is linked to high population density on islands. We predicted that when population density is low and/or fluctuating insular vertebrates may evolve correlated trait shifts running opposite to the Island Syndrome, which we collectively refer to as the 'reversed island syndrome' (RIS) hypothesis. On the proximate level, we hypothesized that RIS is caused by increased activity levels in melanocortin receptors. Melanocortins are postranslational products of the proopiomelanocortin gene, which controls pleiotropically pigmentation, aggressiveness, sexual activity, and food intake in vertebrates.  相似文献   

13.

Aim

We investigated the spatial and temporal patterns of diversification among colourful and flightless weevils, the Pachyrhynchus orbifer complex, to test the stepping‐stone hypothesis of colonization across the Taiwan–Luzon volcanic belt.

Location

Southeast Asia.

Methods

The phylogeny of the P. orbifer complex was reconstructed from a multi‐locus data set of mitochondrial and nuclear genes using maximum likelihood in RAxML and Bayesian inference in MRBAYES. Likelihood‐based tests in CONSEL were used to evaluate alternative tree topologies. Divergence times were estimated in beast based on a range of mutation rates. Ancestral range and biogeographical history were reconstructed using Bayesian binary MCMC (BBM) methods in RASP and in BioGeoBEARS. Demographic histories were inferred using the extended Bayesian skyline plot (EBSP). Species boundaries were tested using BPP.

Results

The phylogeny of the P. orbifer complex indicated strong support for seven reciprocally monophyletic lineages grouped by current island boundaries (Camiguin, Fuga, Dalupiri, Calayan, Babuyan, Orchid and Yaeyama Islands), except for a sister Green + Itbayat lineage. Complex and stochastic colonization of P. orbifer was inferred to have involved both northward and southward directions with short‐ and long‐distance dispersal events, which are strongly inconsistent with the strict stepping‐stone hypothesis. Divergence time estimates for all extant island lineages (<1 Myr of Middle Pleistocene) are much more recent than the geological ages (22.4–1.7 Myr) and subaerial existence (c. 3 Myr) of the islands. The statistically delimited seven cryptic species imply that the diversity of Pachyrhynchus from small peripheral islands continues to be largely under‐estimated.

Main conclusions

The non‐linear, more complex spatial and temporal settings of the archipelago and stochastic dispersal were probable key factors shaping the colonization history of the P. orbifer complex. Speciation of the P. orbifer complex may have occurred only between islands, indicating that peripatric speciation through the founders of stochastic dispersals was the major evolutionary driver.  相似文献   

14.
The adaptability of pathogenic bacteria to hosts is influenced by the genomic plasticity of the bacteria, which can be increased by such mechanisms as horizontal gene transfer. Pathogenicity islands play a major role in this type of gene transfer because they are large, horizontally acquired regions that harbor clusters of virulence genes that mediate the adhesion, colonization, invasion, immune system evasion, and toxigenic properties of the acceptor organism. Currently, pathogenicity islands are mainly identified in silico based on various characteristic features: (1) deviations in codon usage, G+C content or dinucleotide frequency and (2) insertion sequences and/or tRNA genetic flanking regions together with transposase coding genes. Several computational techniques for identifying pathogenicity islands exist. However, most of these techniques are only directed at the detection of horizontally transferred genes and/or the absence of certain genomic regions of the pathogenic bacterium in closely related non-pathogenic species. Here, we present a novel software suite designed for the prediction of pathogenicity islands (pathogenicity island prediction software, or PIPS). In contrast to other existing tools, our approach is capable of utilizing multiple features for pathogenicity island detection in an integrative manner. We show that PIPS provides better accuracy than other available software packages. As an example, we used PIPS to study the veterinary pathogen Corynebacterium pseudotuberculosis, in which we identified seven putative pathogenicity islands.  相似文献   

15.
Streptococcus agalactiae or Group B streptococci (GBS) are a common cause of serious diseases of newborns and adults. GBS pathogenicity largely depends on genes located on the accessory genome including several pathogenicity islands (PAI). The present paper is focused on the structure and molecular epidemiological analysis of one of the GBS pathogenicity islands—the pathogenicity island PAI XII (Glaser et al. Mol Microbiol 45(6):1499–1513, 2002). This PAI was found to be composed of three different mobile genetic elements: a composite transposon (PAI-C), a genomic islet (PAI-B), and a pathogenicity island associated with gene sspB1 (PAI-A). PAI-A in GBS has a homolog——PAI-A1 with similar, but a different genetic constellation. PCR-based analysis of GBS collections from different countries revealed that a strains lineage with PAI-A is less common than PAI-A1 and was determined to be present only among the strains obtained from Russia. Our results suggest that PAI-A and PAI-A1 have the same progenitor, which evolved independently and appeared in the GBS genome as separate genetic events. Results of this study reflect specific geographical distribution of the GBS strains with the mobile genetic element under study.  相似文献   

16.

Aim

To assess whether mammalian species introduced onto islands across the globe have evolved to exhibit body size patterns consistent with the ‘island rule,’, and to test an ecological explanation for body size evolution of insular mammals.

Location

Islands worldwide.

Methods

We assembled data on body mass, geographical characteristics (latitude, maximum elevation) and ecological communities (number of mammalian competitors, predators and prey) for 385 introduced populations across 285 islands, comprising 56 species of extant, non‐volant mammals. We used linear regression, ANCOVA and regression tree analyses to test whether introduced populations of mammals exhibit the island rule pattern, whether the degree of body size change increased with time in isolation and whether residual variation about the general trend can be attributed to the geographical and ecological characteristics of the islands.

Results

Introduced populations follow the predicted island rule trend, with body size shifts more pronounced for populations with greater residence times on the islands. Small mammals evolved to larger body sizes in lower latitudes and on islands with limited topographic relief. Consistent with our hypothesis on the ecology of evolution, body size of insular introduced populations was influenced by co‐occurring species of mammalian competitors, predators and prey.

Conclusion

The island rule is a pervasive pattern, exhibited across a broad span of geographical regions, taxa, time periods and, as evidenced here, for introduced as well as native mammals. Time in isolation impacts body size evolution profoundly. Body size shift of introduced mammals was much more pronounced with increasing residence times, yet far less than that exhibited by native, palaeo‐insular mammals (residence times > 10,000 years). Given the antiquity of many species introductions, it appears that much of what we view as the natural character and ecological dynamics of recent insular communities may have been rendered artefacts of ancient colonizations by humans and commensals.  相似文献   

17.

Background  

Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution.  相似文献   

18.

Background  

Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs). These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds.  相似文献   

19.
Microevolution in island rodents   总被引:3,自引:0,他引:3  
Pergams  Oliver R.W.  Ashley  Mary V. 《Genetica》2001,(1):245-256
We perform a meta-analysis on morphological data from four island rodent populations exhibiting microevolution (>100 years). Data consisting of incidences of skeletal variants, cranial, and external measurements are from house mice (Mus musculus) on one Welsh and one Scottish island, black rats (Rattus rattus) on two Galapagos islands, and deer mice (Peromyscus maniculatus) on three California Channel islands. We report extremely high rates of microevolution for many traits; 60% of all mensural traits measured changed at a rate of 600 d or greater (max. 2682 d). The proportion of all mensural traits evolving at 600–800 d (23%) was idiosyncratic and departed from an expected negative exponential distribution. We argue that selection, rather than founder events, is largely responsible for the substantial shifts in morphology seen among insular rodents. Examining individual traits, there is a trend towards the nose becoming longer and wider, while the skull becomes shallower, shown by both rats and mice on five different islands. We found a significant correlation between island size and degree of skeletal variant evolution and between island distance from the mainland (or nearest island) and degree of cranial and external character evolution. Thus, microevolution of rodents is greater on smaller and more remote islands.  相似文献   

20.
MacArthur and Wilson’s equilibrium theory is one of the most influential theories in ecology. Although evolution on islands is to be important to island biodiversity, speciation has not been well integrated into island biogeography models. By incorporating speciation and factors influencing it into the MacArthur-Wilson model, we propose a generalized model unifying ecological and evolutionary processes and island features. Intra-island speciation may play an important role in both island species richness and endemism, and the contribution of speciation to local species diversity may eventually be greater than that of immigration under certain conditions. Those conditions are related to the per species speciation rate, per species extinction rate, and island features, and they are independent of immigration rate. The model predicts that large islands will have a high, though not the highest, proportional endemism when other parameters are fixed. Based on the generalized model, changes in species richness and endemism on an oceanic island over time were predicted to be similar to empirical observations. Our model provides an ideal starting point for re-evaluating the role of speciation and re-analyzing available data on island species diversity, especially those biased by the MacArthur-Wilson model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号