首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The parasite Giardia intestinalis undergoes a differentiation process that allows it to infect its mammal host. That process is excystation. We examined the importance of protein phosphorylation during the passage from cyst to trophozoite. Cysts obtained from patients with giardiasis were excysted in vitro and the soluble cytoplasmic proteins were analyzed during the three phases of the process, using a specific staining for phosphoproteins. We found two phosphorylated proteins and identified them with MALDI-TOF as 14-3-3 and Hsp70. Modifications were detected in both proteins, which could indicate a role in differentiation of the parasite. In addition, the inhibition of serine–threonine kinases during excystation specifically affected the cytokinesis of the excyzoite, thus inhibiting the completion of trophozoite formation.  相似文献   

3.
Giardia intestinalis arginine deiminase (GiADI) is an important metabolic enzyme involved in the energy production and defense of this protozoan parasite. The lack of this enzyme in the human host makes GiADI an attractive target for drug design against G. intestinalis. One approach in the design of inhibitors of GiADI could be computer-assisted studies of its crystal structure, such as docking; however, the required crystallographic structure of the enzyme still remains unresolved. Because of its relevance, in this work, we present a three-dimensional structure of GiADI obtained from its amino acid sequence using the homology modeling approximation. Furthermore, we present an approximation of the most stable dimeric structure of GiADI identified through molecular dynamics simulation studies. An in silico analysis of druggability using the structure of GiADI was carried out in order to know if it is a good target for design and optimization of selective inhibitors. Potential GiADI inhibitors were identified by docking of a set of 3196 commercial and 19 in-house benzimidazole derivatives, and molecular dynamics simulation studies were used to evaluate the stability of the ligand–enzyme complexes.  相似文献   

4.
The amitochondrial human intestinal parasite Giardia intestinalis is regarded to be the most ancient living example of single-celled eukaryotes and should display primitive features of pre-metazoan gene regulation. Characterization of E. coli clones which express Giardia antigens from plasmid vectors has revealed that an antigen is encoded by the rDNA repeat unit from the strand complementary to that encoding the rRNAs. The open reading frame (ORF) originates in the spacer region between the small (SS) and large (LS) subunit rRNA genes and terminates within the LS rRNA gene. The promoter region of this ORF has characteristics of both RNA polymerase (pol) II and pol III regulatory sequences, suggestive of gene regulation before these different promoter types evolved. The rDNA repeat unit is located on multiple chromosomal sites which are different in each isolate, although the electrophoretic karyotypes appear very stable in Giardia from both human and animal sources.  相似文献   

5.
6.
7.
The cyclophilins (Cyps) are family members of proteins that exhibit peptidylprolyl cis-trans isomerase (PPIase, EC 5.2.1.8) activity and bind the immunosuppressive agent cyclosprin A (CsA) in varying degrees. During the process of random sequencing of a cDNA library made from Giardia intestinalis WB strain, the cyclophilin gene (gicyp 1) was isolated. An open reading frame of gicyp 1 gene was 576 nucleotides, which corresponded to a translation product of 176 amino acids (Gicyp 1). The identity with other Cyps was about 58-71%. The 13 residues that constituted the CsA binding site of human cyclophilin were also detected in the amino acid sequence of Gicyp 1, including tryptophan residue essential for the drug binding. The single copy of the gicyp 1 gene was detected in the G. intestinalis chromosome by southern hybridization analysis. Recombinant Gicyp 1 protein clearly accelerated the rate of cis-->trans isomerization of the peptide substrate and the catalysis was completely inhibited by the addition of 0.5 microM CsA.  相似文献   

8.
Giardia intestinalis is a complex species divided into 7 assemblages (A - G). Two of them (A and B) are infective for both humans and animals. In cats four assemblages can occur: A, B, D, and F Assemblages A and B infect either cats, dogs and humans, assemblage D infects cats and dogs and assemblage F only cats. The purpose of this study was to determine the prevalence and genotypes of G. intestinalis in cats from Warsaw. From November 2006 to March 2007 a hundred sixty samples of stool were collected and examined by light microscopy. G. intestinalis cysts were detected in 3.75% of samples. DNA extracted from positive samples was used as template for PCR-RFLP using Giardia specific primers and the amplicons were sequenced. A comparison of the obtained DNA sequences with the Giardia sequences in the GeneBank database revealed assemblage A in 1.25% of the investigated cats, assemblage B in 1.25% and D in 1.25%.  相似文献   

9.
We developed a series of plasmids that allow C-terminal tagging of any gene in its endogenous locus in Giardia intestinalis, with different epitope tags (triple hemagglutinin [3HA] and triple Myc [3Myc]) and selection markers (puromycin, neomycin, and a newly developed marker, blasticidin). Using these vectors, cyclin B and aurora kinase were tagged, expressed, and localized.  相似文献   

10.
11.
The UDP-N-acetylglucosamine pyrophosphorylase in Giardia intestinalis (GiUAP) is one of the five inducible enzymes to synthesize UDP-GalNAc, which is an important precursor for cyst wall synthesis. The recombinant UDP-N-acetylglucosamine pyrophosphorylase (rGiUAP) and its mutants G108A and G210A were expressed and identified by SDS-PAGE, size-exclusion chromatography, Western hybridization, and MALDI mass spectrometry. Sequence comparison with other eukaryotic UAPs has identified three specific motifs. Within these motifs alanine substitution for Gly(108) or Gly(210) dramatically reduced the pyrophosphate synthesis, suggesting these amino acids are catalytic residues. Besides, the rGiUAP was found to have relaxed binding to other uridine-based nucleotides, suggesting the substrate binding pocket is specific to uridine rather than phosphate group(s). Moreover, thermal denaturation analysis showed a significant increase in T(m) for the rGiUAP and G108A upon binding of the substrate Mg-UTP. In contrast, G210A showed a decreased T(m) upon binding of Mg-UTP. These results showed that binding of Mg-UTP increases protein stability of the rGiUAP, and the catalytic residue Gly(210) plays a significant role in stabilizing the protein structure. Such stabilization effect induced by substrate binding might be physiologically important as it favors the production of UDP-GlcNAc and hence the downstream GalNAc, which is crucial to survival of Giardia. These results help to define the essential amino acids for catalysis in the GiUAP and reveal the role of Mg-UTP binding in regulation of protein stability.  相似文献   

12.
13.
Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle.  相似文献   

14.
Giardia intestinalis has been found in a variety of mammals, including humans, and consists of host-specific and zoonotic genotypes. There has been only 1 study of G. intestinalis infection in weasels, but the genotype of its isolate remains unclear. In this study, we report the isolation of Giardia in a ferret exhibited at a pet shop. The isolate was analyzed genetically to validate the possibility of zoonotic transmission. Giardia diagnostic fragments of the small subunit ribosomal RNA, beta-giardin, and glutamate dehydrogenase genes were amplified from the ferret isolate and sequenced to reveal the phylogenetic relationships between it and other Giardia species or genotypes of G. intestinalis reported previously. The results showed that the ferret isolate represented the genetic group A-I in assemblage A, which could be a causative agent of human giardiasis.  相似文献   

15.
Ullu E  Lujan HD  Tschudi C 《Eukaryotic cell》2005,4(6):1155-1157
Sequencing of a library of small RNAs from Giardia intestinalis identified a novel class of small sense and antisense RNAs homologous to the retroposon family GilT/Genie1 that is located at certain telomeres. These small RNAs may contribute to silencing GilT expression via the RNA interference pathway.  相似文献   

16.
RNAs processing other RNAs is very general in eukaryotes, but is not clear to what extent it is ancestral to eukaryotes. Here we focus on pre-mRNA splicing, one of the most important RNA-processing mechanisms in eukaryotes. In most eukaryotes splicing is predominantly catalysed by the major spliceosome complex, which consists of five uridine-rich small nuclear RNAs (U-snRNAs) and over 200 proteins in humans. Three major spliceosomal introns have been found experimentally in Giardia; one Giardia U-snRNA (U5) and a number of spliceosomal proteins have also been identified. However, because of the low sequence similarity between the Giardia ncRNAs and those of other eukaryotes, the other U-snRNAs of Giardia had not been found. Using two computational methods, candidates for Giardia U1, U2, U4 and U6 snRNAs were identified in this study and shown by RT-PCR to be expressed. We found that identifying a U2 candidate helped identify U6 and U4 based on interactions between them. Secondary structural modelling of the Giardia U-snRNA candidates revealed typical features of eukaryotic U-snRNAs. We demonstrate a successful approach to combine computational and experimental methods to identify expected ncRNAs in a highly divergent protist genome. Our findings reinforce the conclusion that spliceosomal small-nuclear RNAs existed in the last common ancestor of eukaryotes.  相似文献   

17.
Glycogen phosphorylase genes or messages from four amitochondriate eukaryotes, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica (two genes) and Giardia intestinalis, have been isolated and sequenced. The sequences of the amitochondriate protist enzymes appear to share a most recent common ancestor. The clade containing these sequences is closest to that of another protist, the slime mold (Dictyostelium discoideum), and is more closely related to fungal and plant phosphorylases than to mammalian and eubacterial homologs. Structure-based amino acid alignment shows conservation of the residues and domains involved in catalysis and allosteric regulation by glucose 6-phosphate but high divergence at domains involved in phosphorylation-dependent regulation and AMP binding in fungi and animals. Protist phosphorylases, as their prokaryotic and plant counterparts, are probably not regulated by phosphorylation.  相似文献   

18.
In this study, disinfection of water containing Giardia intestinalis and Acanthamoeba castellani cysts with TiO2 and modified catalyst silver loaded TiO2 (Ag-TiO2) was investigated. Destruction of the parasites was evaluated after UV illumination of the suspension consisting 5 x 10(8)-13.5 x 10(8)cysts/mL in the presence of 2g/L neat or modified TiO2 at neutral pH. In the initial stage, the solid photocatalyst particles penetrated the cyst wall and then oxidant species produced by TiO2/UV destroyed both cell wall and intracellular structure. In the case of G. intestinalis inactivation (disinfection) performance of TiO2/UV system reached 52.5% only after 25 min illumination and total parasite disinfection was achieved after 30 min illumination. However, silver loaded TiO2 seemed to be more effective as this loading provided better catalytic action as well as additional antimicrobial properties. Cell viability tests showed that parasite cysts, their walls in particular, were irreversibly damaged and cysts did not re-grow. Nevertheless the studied system seemed to be ineffective for the inactivation of A. castellani. Inactivation percentages of TiO2/UV and Ag-TiO2/UV systems were far lower than that of UV alone, being 50.1% and 46.1%, respectively.  相似文献   

19.
A cDNA clone encoding GLORF-C4 was isolated from the WB strain, an assemblage A Giardia intestinalis. Interestingly, GLORF-C4 has been previously reported as an assemblage B-specific gene. Using two primers based on GLORF-C4 of the GS strain, a prototype assemblage B, GLORF-C4 gene was amplified from all the groups of G. intestinalis, and applied to detect the presence of cysts of G. intestinalis from faecal samples of cyst-passers. RFLP analysis of this PCR product successfully classified G. intestinalis into two distinct groups, assemblages A and B.  相似文献   

20.
During B-cell receptor (BCR) signaling, phosphoinositide-3 kinase (PI3K) is thought to function upstream of phospholipase Cgamma2 (PLCgamma2). PLCgamma2 deficiency specifically impedes transitional type 2 (T2) to follicular (FO) mature B-cell transition. Here, we demonstrate that PI3K deficiency specifically impaired T2-to-FO mature B-cell transition and marginal zone B-cell development. Furthermore, we investigated the functional relationship between PI3K and PLCgamma2 using PI3K-/-, PLCgamma2-/-, and PI3K-/- PLCgamma2-/- B cells. Interestingly, PLCgamma2 deficiency had no effect on BCR-mediated PI3K activation, whereas PI3K deficiency only partially blocked activation of PLCgamma2. Moreover, whereas PI3K-/- PLCgamma2-/- double deficiency did not affect hematopoiesis, it resulted in embryonic lethality. PI3K-/- PLCgamma2-/- fetal liver cells transplanted into B-cell null JAK3-/- mice failed to restore development of peripheral B cells and failed to progress through early B-cell development at the pro-B- to pre-B-cell transition, a more severe phenotype than was observed with either PI3K or PLCgamma2 single-deficiency B cells. Consistent with this finding, BCR signaling was more severely impaired in the absence of both PI3K and PLCgamma2 genes than in the absence of either one alone. Taken together, these results demonstrate that whereas PI3K functions upstream of PLCgamma2, activation of PLCgamma2 can occur independently of PI3K and that PI3K and PLCgamma2 also have distinct functions in BCR signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号