首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of runs statistics for pattern recognition in genomic DNA sequences.   总被引:2,自引:0,他引:2  
In this article, the use of the finite Markov chain imbedding (FMCI) technique to study patterns in DNA under a hidden Markov model (HMM) is introduced. With a vision of studying multiple runs-related statistics simultaneously under an HMM through the FMCI technique, this work establishes an investigation of a bivariate runs statistic under a binary HMM for DNA pattern recognition. An FMCI-based recursive algorithm is derived and implemented for the determination of the exact distribution of this bivariate runs statistic under an independent identically distributed (IID) framework, a Markov chain (MC) framework, and a binary HMM framework. With this algorithm, we have studied the distributions of the bivariate runs statistic under different binary HMM parameter sets; probabilistic profiles of runs are created and shown to be useful for trapping HMM maximum likelihood estimates (MLEs). This MLE-trapping scheme offers good initial estimates to jump-start the expectation-maximization (EM) algorithm in HMM parameter estimation and helps prevent the EM estimates from landing on a local maximum or a saddle point. Applications of the bivariate runs statistic and the probabilistic profiles in conjunction with binary HMMs for pattern recognition in genomic DNA sequences are illustrated via case studies on DNA bendability signals using human DNA data.  相似文献   

2.
Exact inference for matched case-control studies   总被引:1,自引:0,他引:1  
K F Hirji  C R Mehta  N R Patel 《Biometrics》1988,44(3):803-814
In an epidemiological study with a small sample size or a sparse data structure, the use of an asymptotic method of analysis may not be appropriate. In this paper we present an alternative method of analyzing data for case-control studies with a matched design that does not rely on large-sample assumptions. A recursive algorithm to compute the exact distribution of the conditional sufficient statistics of the parameters of the logistic model for such a design is given. This distribution can be used to perform exact inference on model parameters, the methodology of which is outlined. To illustrate the exact method, and compare it with the conventional asymptotic method, analyses of data from two case-control studies are also presented.  相似文献   

3.
A major obstacle in applying various hypothesis testing procedures to datasets in bioinformatics is the computation of ensuing p-values. In this paper, we define a generic branch-and-bound approach to efficient exact p-value computation and enumerate the required conditions for successful application. Explicit procedures are developed for the entire Cressie-Read family of statistics, which includes the widely used Pearson and likelihood ratio statistics in a one-way frequency table goodness-of-fit test. This new formulation constitutes a first practical exact improvement over the exhaustive enumeration performed by existing statistical software. The general techniques we develop to exploit the convexity of many statistics are also shown to carry over to contingency table tests, suggesting that they are readily extendible to other tests and test statistics of interest. Our empirical results demonstrate a speed-up of orders of magnitude over the exhaustive computation, significantly extending the practical range for performing exact tests. We also show that the relative speed-up gain increases as the null hypothesis becomes sparser, that computation precision increases with increase in speed-up, and that computation time is very moderately affected by the magnitude of the computed p-value. These qualities make our algorithm especially appealing in the regimes of small samples, sparse null distributions, and rare events, compared to the alternative asymptotic approximations and Monte Carlo samplers. We discuss several established bioinformatics applications, where small sample size, small expected counts in one or more categories (sparseness), and very small p-values do occur. Our computational framework could be applied in these, and similar cases, to improve performance.  相似文献   

4.
Statistics on Markov chains are widely used for the study of patterns in biological sequences. Statistics on these models can be done through several approaches. Central limit theorem (CLT) producing Gaussian approximations are one of the most popular ones. Unfortunately, in order to find a pattern of interest, these methods have to deal with tail distribution events where CLT is especially bad. In this paper, we propose a new approach based on the large deviations theory to assess pattern statistics. We first recall theoretical results for empiric mean (level 1) as well as empiric distribution (level 2) large deviations on Markov chains. Then, we present the applications of these results focusing on numerical issues. LD-SPatt is the name of GPL software implementing these algorithms. We compare this approach to several existing ones in terms of complexity and reliability and show that the large deviations are more reliable than the Gaussian approximations in absolute values as well as in terms of ranking and are at least as reliable as compound Poisson approximations. We then finally discuss some further possible improvements and applications of this new method.  相似文献   

5.
6.
Pairwise sequence alignments aim to decide whether two sequences are related and, if so, to exhibit their related domains. Recent works have pointed out that a significant number of true homologous sequences are missed when using classical comparison algorithms. This is the case when two homologous sequences share several little blocks of homology, too small to lead to a significant score. On the other hand, classical alignment algorithms, when detecting homologies, may fail to recognize all the significant biological signals. The aim of the paper is to give a solution to these two problems. We propose a new scoring method which tends to increase the score of an alignment when "blocks" are detected. This so-called Block-Scoring algorithm, which makes use of dynamic programming, is worth being used as a complementary tool to classical exact alignments methods. We validate our approach by applying it on a large set of biological data. Finally, we give a limit theorem for the score statistics of the algorithm.  相似文献   

7.
There is a need for faster and more sensitive algorithms for sequence similarity searching in view of the rapidly increasing amounts of genomic sequence data available. Parallel processing capabilities in the form of the single instruction, multiple data (SIMD) technology are now available in common microprocessors and enable a single microprocessor to perform many operations in parallel. The ParAlign algorithm has been specifically designed to take advantage of this technology. The new algorithm initially exploits parallelism to perform a very rapid computation of the exact optimal ungapped alignment score for all diagonals in the alignment matrix. Then, a novel heuristic is employed to compute an approximate score of a gapped alignment by combining the scores of several diagonals. This approximate score is used to select the most interesting database sequences for a subsequent Smith-Waterman alignment, which is also parallelised. The resulting method represents a substantial improvement compared to existing heuristics. The sensitivity and specificity of ParAlign was found to be as good as Smith-Waterman implementations when the same method for computing the statistical significance of the matches was used. In terms of speed, only the significantly less sensitive NCBI BLAST 2 program was found to outperform the new approach. Online searches are available at http://dna.uio.no/search/  相似文献   

8.
A central task in the study of molecular evolution is the reconstruction of a phylogenetic tree from sequences of current-day taxa. The most established approach to tree reconstruction is maximum likelihood (ML) analysis. Unfortunately, searching for the maximum likelihood phylogenetic tree is computationally prohibitive for large data sets. In this paper, we describe a new algorithm that uses Structural Expectation Maximization (EM) for learning maximum likelihood phylogenetic trees. This algorithm is similar to the standard EM method for edge-length estimation, except that during iterations of the Structural EM algorithm the topology is improved as well as the edge length. Our algorithm performs iterations of two steps. In the E-step, we use the current tree topology and edge lengths to compute expected sufficient statistics, which summarize the data. In the M-Step, we search for a topology that maximizes the likelihood with respect to these expected sufficient statistics. We show that searching for better topologies inside the M-step can be done efficiently, as opposed to standard methods for topology search. We prove that each iteration of this procedure increases the likelihood of the topology, and thus the procedure must converge. This convergence point, however, can be a suboptimal one. To escape from such "local optima," we further enhance our basic EM procedure by incorporating moves in the flavor of simulated annealing. We evaluate these new algorithms on both synthetic and real sequence data and show that for protein sequences even our basic algorithm finds more plausible trees than existing methods for searching maximum likelihood phylogenies. Furthermore, our algorithms are dramatically faster than such methods, enabling, for the first time, phylogenetic analysis of large protein data sets in the maximum likelihood framework.  相似文献   

9.
Wang K 《Human heredity》2003,55(1):1-15
The use of correlated phenotypes may dramatically increase the power to detect the underlying quantitative trait loci (QTLs). Current approaches for multiple phenotypes include regression-based methods, the multivariate variance of components method, factor analysis and structural equations. Issues with these methods include: 1) They are computation intensive and are subject to problems of optimization algorithms; 2) Existing claims on the asymptotic distribution of the likelihood ratio statistic for the multivariate variance of components method are contradictory and erroneous; 3) The dimension reduction of the parameter space under the null hypothesis, a phenomenon that is unique to multivariate analyses, makes the asymptotic distribution of the likelihood ratio statistic more complicated than expected. In this article, three cases of varying complexity are considered. For each case, the efficient score statistic, which is asympotically equivalent to the likelihood ratio statistic, is derived, so is its asymptotic distribution [correction]. These methods are straightforward to calculate. Finite-sample properties of these score statistics are studied through extensive simulations. These score statistics are for use with general pedigrees.  相似文献   

10.

Background:  

In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...).  相似文献   

11.
Inverse sampling is considered to be a more appropriate sampling scheme than the usual binomial sampling scheme when subjects arrive sequentially, when the underlying response of interest is acute, and when maximum likelihood estimators of some epidemiologic indices are undefined. In this article, we study various statistics for testing non-unity rate ratios in case-control studies under inverse sampling. These include the Wald, unconditional score, likelihood ratio and conditional score statistics. Three methods (the asymptotic, conditional exact, and Mid-P methods) are adopted for P-value calculation. We evaluate the performance of different combinations of test statistics and P-value calculation methods in terms of their empirical sizes and powers via Monte Carlo simulation. In general, asymptotic score and conditional score tests are preferable for their actual type I error rates are well controlled around the pre-chosen nominal level, and their powers are comparatively the largest. The exact version of Wald test is recommended if one wants to control the actual type I error rate at or below the pre-chosen nominal level. If larger power is expected and fluctuation of sizes around the pre-chosen nominal level are allowed, then the Mid-P version of Wald test is a desirable alternative. We illustrate the methodologies with a real example from a heart disease study.  相似文献   

12.
Kann MG  Goldstein RA 《Proteins》2002,48(2):367-376
A detailed analysis of the performance of hybrid, a new sequence alignment algorithm developed by Yu and coworkers that combines Smith Waterman local dynamic programming with a local version of the maximum-likelihood approach, was made to access the applicability of this algorithm to the detection of distant homologs by sequence comparison. We analyzed the statistics of hybrid with a set of nonhomologous protein sequences from the SCOP database and found that the statistics of the scores from hybrid algorithm follows an Extreme Value Distribution with lambda approximately 1, as previously shown by Yu et al. for the case of artificially generated sequences. Local dynamic programming was compared to the hybrid algorithm by using two different test data sets of distant homologs from the PFAM and COGs protein sequence databases. The studies were made with several score functions in current use including OPTIMA, a new score function originally developed to detect remote homologs with the Smith Waterman algorithm. We found OPTIMA to be the best score function for both both dynamic programming and the hybrid algorithms. The ability of dynamic programming to discriminate between homologs and nonhomologs in the two sets of distantly related sequences is slightly better than that of hybrid algorithm. The advantage of producing accurate score statistics with only a few simulations may overcome the small differences in performance and make this new algorithm suitable for detection of homologs in conjunction with a wide range of score functions and gap penalties.  相似文献   

13.
DNA and protein sequence comparisons are performed by a number of computational algorithms. Most of these algorithms search for the alignment of two sequences that optimizes some alignment score. It is an important problem to assess the statistical significance of a given score. In this paper we use newly developed methods for Poisson approximation to derive estimates of the statistical significance ofk-word matches on a diagonal of a sequence comparison. We require at leastq of thek letters of the words to match where 0<qk. The distribution of the number of matches on a diagonal is approximated as well as the distribution of the order statistics of the sizes of clumps of matches on the diagonal. These methods provide an easily computed approximation of the distribution of the longest exact matching word between sequences. The methods are validated using comparisons of vertebrate andE. coli protein sequences. In addition, we compare two HLA class II transplantation antigens by this method and contrast the results with a dynamic programming approach. Several open problems are outlined in the last section. This work was supported by grants DMS 90-05833 from NSF and GM 36230 from NIH.  相似文献   

14.
In searching for strong homologies between multiple nucleic acid or protein sequences, researchers commonly look at fixed-length segments in common to the sequences. Such homologies form the foundation of segment-based algorithms for multiple alignment of protein sequences. The researcher uses settings of “unusualness of multiple matches” to calibrate the algorithms. In applications where a researcher has found a multiple matching word, statistical significance helps gauge the unusualness of the observed match. Previous approximations for the unusualness of multiple matches are based on large sample theory, and are sometimes quite inaccurate. Section 2 illustrates this inaccuracy, and provides accurate approximations for the probability of a common word inR out ofR sequences. Section 3 generalizes the approximation to multiple matching inR out ofS sequences. Section 4 describes a more complex approximation that incorporates exact probabilities and yields excellent accuracy; this approximation is useful for checking the simpler approximations over a range of values.  相似文献   

15.
The Exact Test for Cytonuclear Disequilibria   总被引:2,自引:0,他引:2       下载免费PDF全文
C. J. Basten  M. A. Asmussen 《Genetics》1997,146(3):1165-1171
We extend the analysis of the statistical properties of cytonuclear disequilibria in two major ways. First, we develop the asymptotic sampling theory for the nonrandom associations between the alleles at a haploid cytoplasmic locus and the alleles and genotypes at a diploid nuclear locus, when there are an arbitrary number of alleles at each marker. This includes the derivation of the maximum likelihood estimators and their sampling variances for each disequilibrium measure, together with simple tests of the null hypothesis of no disequilibrium. In addition to these new asymptotic tests, we provide the first implementation of Fisher's exact test for the genotypic cytonuclear disequilibria and some approximations of the exact test. We also outline an exact test for allelic cytonuclear disequilibria in multiallelic systems. An exact test should be used for data sets when either the marginal frequencies are extreme or the sample size is small. The utility of this new sampling theory is illustrated through applications to recent nuclear-mtDNA and nuclear-cpDNA data sets. The results also apply to population surveys of nuclear loci in conjunction with markers in cytoplasmically inherited microorganisms.  相似文献   

16.
Tandem repeats occur frequently in biological sequences. They are important for studying genome evolution and human disease. A number of methods have been designed to detect a single tandem repeat in a sliding window. In this article, we focus on the case that an unknown number of tandem repeat segments of the same pattern are dispersively distributed in a sequence. We construct a probabilistic generative model for the tandem repeats, where the sequence pattern is represented by a motif matrix. A Bayesian approach is adopted to compute this model. Markov chain Monte Carlo (MCMC) algorithms are used to explore the posterior distribution as an effort to infer both the motif matrix of tandem repeats and the location of repeat segments. Reversible jump Markov chain Monte Carlo (RJMCMC) algorithms are used to address the transdimensional model selection problem raised by the variable number of repeat segments. Experiments on both synthetic data and real data show that this new approach is powerful in detecting dispersed short tandem repeats. As far as we know, it is the first work to adopt RJMCMC algorithms in the detection of tandem repeats.  相似文献   

17.
Many statistical methods and programs are available to compute the significance of a given DNA pattern in a genome sequence. In this paper, after outlining the mathematical background of this problem, we present SPA (Statistic for PAtterns), an expert system with a simple web interface designed to be applied to two of these methods (large deviation approximations and exact computations using simple recurrences). A few results are presented, leading to a comparison between the two methods and to a simple decision rule in the choice of that to be used. Finally, future developments of SPA are discussed. This tool is available at the following address: http://stat.genopole.cnrs.fr/SPA/.  相似文献   

18.
The score statistics of probabilistic gapped local alignment of random sequences is investigated both analytically and numerically. The full probabilistic algorithm (e.g., the "local" version of maximum-likelihood or hidden Markov model method) is found to have anomalous statistics. A modified "semi-probabilistic" alignment consisting of a hybrid of Smith-Waterman and probabilistic alignment is then proposed and studied in detail. It is predicted that the score statistics of the hybrid algorithm is of the Gumbel universal form, with the key Gumbel parameter lambda taking on a fixed asymptotic value for a wide variety of scoring systems and parameters. A simple recipe for the computation of the "relative entropy," and from it the finite size correction to lambda, is also given. These predictions compare well with direct numerical simulations for sequences of lengths between 100 and 1,000 examined using various PAM substitution scores and affine gap functions. The sensitivity of the hybrid method in the detection of sequence homology is also studied using correlated sequences generated from toy mutation models. It is found to be comparable to that of the Smith-Waterman alignment and significantly better than the Viterbi version of the probabilistic alignment.  相似文献   

19.
Analysis of biopolymer sequences and structures generally adopts one of two approaches: use of detailed biophysical theoretical models of the system with experimentally-determined parameters, or largely empirical statistical models obtained by extracting parameters from large datasets. In this work, we demonstrate a merger of these two approaches using Bayesian statistics. We adopt a common biophysical model for local protein folding and peptide configuration, the helix-coil model. The parameters of this model are estimated by statistical fitting to a large dataset, using prior distributions based on experimental data. L(1)-norm shrinkage priors are applied to induce sparsity among the estimated parameters, resulting in a significantly simplified model. Formal statistical procedures for evaluating support in the data for previously proposed model extensions are presented. We demonstrate the advantages of this approach including improved prediction accuracy and quantification of prediction uncertainty, and discuss opportunities for statistical design of experiments. Our approach yields a 39% improvement in mean-squared predictive error over the current best algorithm for this problem. In the process we also provide an efficient recursive algorithm for exact calculation of ensemble helicity including sidechain interactions, and derive an explicit relation between homo- and heteropolymer helix-coil theories and Markov chains and (non-standard) hidden Markov models respectively, which has not appeared in the literature previously.  相似文献   

20.
For a single locus with two alleles we study the expected extinction and fixation times of the alleles under the influence of selection and genetic drift. Using a diffusion model we derive asymptotic approximations for these expected exit times for large populations. We consider the case where the fitness of the heterozygote is in between the fitnesses of the homozygotes (incomplete dominance). The asymptotic analysis not only yields new quantitative results but also reveals interesting features that remain hidden in the exact solution. Some of the outcomes are extensions of results known in the literature. The asymptotic approximations also apply to the expected first arrival time of an allele at a specified frequency and to the expected age of an allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号