首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence analysis of plant disease resistance genes shows similarity among themselves, with the presence of conserved motifs common to the nucleotide‐binding site (NBS). Oligonucleotide degenerate primers designed from the conserved NBS motifs encoded by several plant disease resistance genes were used to amplify resistance gene analogues (RGAs) corresponding to the NBS sequences from the genomic DNA of various plant species. Using specific primers designed from the conserved NBS regions, 22 RGAs were cloned and sequenced from pearl millet (Pennisetum glaucum L. Br.). Phylogenetic analysis of the predicted amino acid sequences grouped the RGAs into nine distinct classes. GenBank database searches with the consensus protein sequences of each of the nine classes revealed their conserved NBS domains and similarity to other known R genes of various crop species. One RGA 213 was mapped onto LG1 and LG7 in the pearl millet linkage map. This is the first report of the isolation and characterization of RGAs from pearl millet, which will facilitate the improvement of marker‐assisted breeding strategies.  相似文献   

2.
Western white pine (Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust (Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.Communicated by R. Hagemann  相似文献   

3.
Ginger (Zingiber officinale Rosc.) production is seriously affected by many fungal and bacterial diseases to which no resistant source is available in the cultivated germplasm. Degenerate primers based on conserved motifs of plant resistance (R) genes were used to isolate analogous sequences called resistance gene candidates (RGCs) from cultivated and wild Zingiber species. Cloning and sequence characterization identified 42 Zingiber RGCs, which could be classified into five classes following phenetic analysis. Deduced amino acid sequences of Zingiber RGCs showed strong identity, ranging from 16 to 43%, to non-toll interleukin receptor (non-TIR) R-gene subfamily. Non-synonymous to synonymous nucleotide substitution (dN/dS) ratio for the NBS domains of Zingiber RGC classes showed evidence of purifying selection. RT-PCR analysis with 15 Zingiber RGC-specific primers demonstrated 8 of the 15 Zingiber RGCs to be expressed. The present study reports for the first time the isolation and characterization of RGCs from ginger and its wild relatives, which will serve as a potential resource for future improvement of this important vegetatively propagated spice crop.  相似文献   

4.
Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene.  相似文献   

5.
Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05504, NBS-09711, NBS-07688, NBS-03509 and EST-SSR-04241) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.  相似文献   

6.
Toll and interleukin-1 receptor (TIR) and nonTIR nucleotide binding site–leucine rich repeat (NBS–LRR) resistance gene analogues (RGAs) were obtained from chestnut rose (Rosa roxburghii Tratt) by two PCR-based amplification strategies (direct amplification and overlap extension amplification) with degenerate primers designed to the conserved P-loop, kinase-2, and Gly-Leu-Pro-Leu (GLPL) motifs within the NBS domain of plant resistance gene (R gene) products. Thirty-four of 65 cloned PCR fragments contained a continuous open reading frame (ORF) and their predicted protein products showed homology to the NBS–LRR class R proteins in the GenBank database. These 34 predicted protein sequences exhibited a wide range (19.5–99.4%) of sequence identity among them and were classified into two distinct groups by phylogenetic analysis. The first group consisted of 23 sequences and seemed to belong to the nonTIR NBS–LRR RGAs, since they contained group specific motifs (RNBS-A-nonTIR motif) that are often present in the coiled-coil domain of the nonTIR NBS–LRR class R genes. The second group comprised 11 sequences that contained motifs found in the TIR domain of TIR NBS–LRR class R genes. Restriction fragment length polymorphic (RFLP) markers were developed from some of the RGAs and used for mapping powdery mildew resistance genes in chestnut rose. Three markers, RGA22C, RGA4A, and RGA7B, were identified to be linked to a resistance gene locus, designated CRPM1 for chestnut rose powdery mildew resistance 1, which accounted for 72% of the variation in powdery mildew resistance phenotype in an F1 segregating population. To our knowledge, this is the first report on isolation, phylogenetic analysis and potential utilization as genetic markers of RGAs in chestnut rose.  相似文献   

7.
Plant disease resistance genes (R genes) show significant similarity amongst themselves in terms of both their DNA sequences and structural motifs present in their protein products. Oligonucleotide primers designed from NBS (Nucleotide Binding Site) domains encoded by several R-genes have been used to amplify NBS sequences from the genomic DNA of various plant species, which have been called Resistance Gene Analogues (RGAs) or Resistance Gene Candidates (RGCs). Using specific primers from the NBS and TIR (Toll/Interleukin-1 Receptor) regions, we identified twelve classes of RGCs in cassava ( Manihot esculenta Crantz). Two classes were obtained from the PCR-amplification of the TIR domain. The other 10 classes correspond to the NBS sequences and were grouped into two subfamilies. Classes RCa1 to RCa5 are part of the first subfamily and were linked to a TIR domain in the N terminus. Classes RCa6 to RCa10 corresponded to non-TIR NBS-LRR encoding sequences. BAC library screening with the 12 RGC classes as probes allowed the identification of 42 BAC clones that were assembled into 10 contigs and 19 singletons. Members of the two TIR and non-TIR NBS-LRR subfamilies occurred together within individual BAC clones. The BAC screening and Southern hybridization analyses showed that all RGCs were single copy sequences except RCa6 that represented a large and diverse gene family. One BAC contained five NBS sequences and sequence analysis allowed the identification of two complete RGCs encoding two highly similar proteins. This BAC was located on linkage group J with three other RGC-containing BACs. At least one of these genes, RGC2, is expressed constitutively in cassava tissues.Communicated by M.-A. Grandbastien  相似文献   

8.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBS LRR序列中的保守区域设计简并引物,利用RT PCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBS LRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

9.
The cloning of several plant genes directly involved in triggering a disease resistance response has shown that numerous resistance genes in the nucleotide binding site (NBS)/leucine-rich repeat (LRR) class have similar conserved amino acid sequences. In this study, we used a short soybean DNA sequence, previously cloned based on its conserved NBS, as a probe to identify full-length resistance gene candidates. Two homologous, but genetically independent genes were identified. One gene maps to the soybean molecular linkage group (MLG) F and a second is coded on MLG E. The first gene contains a 3,279 nucleotide open reading frame (ORF) sequence and possesses all the functional motifs characteristic of previously cloned NBS/LRR resistance genes. The N-terminal sequence of the deduced gene product is highly characteristic of other resistance genes in the subgroup of NBS/LRR genes which show homology to the Toll/Interleukin-1 receptor genes. The C-terminal region is somewhat more divergent as seen in other cloned disease resistance genes. This region of the F-linked gene contains an LRR region that is characterized by two alternatively spliced products which produce gene products with either a four-repeat or a ten-repeat LRR. The second cloned gene that maps to soybean MLG E contains 1,565 nucleotides of ORF in the N-terminal domain. Despite strong homology, however, the 3′ region of this gene contains several in-frame stop codons and apparent frame shifts compared to the F-linked gene, suggesting that its functionality as a disease resistance gene is questionable. These two disease resistance gene candidates are shown to be closely related to one another and to the members of the NBS/LRR class of disease resistance genes. Received: 29 November 1999 / Accepted: 22 December 1999  相似文献   

10.
为深入研究NBS-LRR基因在川西云杉(Picea balfouriana)抗落针病过程中的分子作用机制,该研究根据GenBank数据库中其他植物NBS-LRR基因保守序列设计引物,利用RT-PCR技术,克隆云杉NBS-LRR基因全长cDNA序列(PbNBS-LRR),分析该基因及其编码蛋白的相关信息并进行基因表达研究。结果表明:(1)成功获得PbNBS-LRR基因的全长2 616 bp(基因登录号:MK044348),且包含一个2 508 bp的完整阅读框(ORF),共编码836个氨基酸,其氨基酸序列具有NBS-LRR类抗病基因典型的NB-ARC结构域和LRR结构域。(2)云杉PbNBS-LRR与北美云杉(Picea sitchensis)NBS-LRR类抗病蛋白相似性最高,达到98%;分子进化分析进一步表明,PbNBS-LRR与北美云杉NBS-LRR亲缘关系最近,其次为糖松(Pinus lambertiana)和火炬松(Pinus taeda)。(3)qRT-PCR分析表明,NBS-LRR基因在川西云杉、粗枝云杉(Picea asperata)和丽江云杉(Picea likiangensis)的根、树干韧皮部、嫩枝及针叶中均有表达,在川西云杉和粗枝云杉的根部以及丽江云杉的树干韧皮部中表达量最高;在落针病病原菌侵染川西云杉和粗枝云杉的初期(5月)以及丽江云杉的后期(9月),NBS-LRR基因的表达量最高,分别为对照的1.73倍、2.11倍和90.49倍,表明NBS-LRR基因参与了云杉落针病的防御反应。  相似文献   

11.
Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops in the world. However, the tomato production is severely affected by many diseases. The use of host resistance is believed to be the most effective approach to control the pathogens. In this study, a total of 1003 resistance‐like genes were identified from the tomato genome using individual full‐length search and conserved domain verification approach. Of the predicted resistance genes, serine/threonine protein kinase was the largest class with 384 genes followed by 212 genes encoding receptor‐like kinase, 107 genes encoding receptor‐like proteins, 68 genes encoding coiled‐coil–nucleotide‐binding site (NBS)–leucine‐rich repeat (LRR) and 19 genes encoding Toll interleukin‐1 receptor domain‐NBS‐LRR. Physical map positions established for all predicted genes using the tomato WGS chromosomes SL2.40 information indicated that most resistance‐like genes clustered on certain chromosomal regions. Comparisons of the sequences from the same resistance‐like genes in S. pimpinellifolium and S. lycopersicum showed that 93.5% genes contained single nucleotide polymorphisms and 19.7% genes contained insertion/deletion. The data obtained here will facilitate isolation and characterization of new resistance genes as well as marker‐assisted selection for disease resistance breeding in tomato.  相似文献   

12.
13.
The genes encoding the nucleotide-binding site (NBS) and leucine-rich repeat (LRR) motifs constitute a large gene family in plants and have attracted much interest, because most of the plant disease-resistance genes that have been cloned are from this gene family. In this study, degenerate oligonucleotide primers, designed on the basis of conserved regions of the NBS domains from known plant resistance genes, were used to isolate resistance gene analogs (RGAs) from cultivated and wild eggplants, i.e., S. melongena, S. aethiopicum gr. Gilo, S. linnaeanum, S. integrifolium, S. sisymbriifolium, and S. khasianum. Sequence analysis indicated that the cloned eggplant RGAs belong to the non-TIR–NBS–LRR type, which are very similar to the R genes or the RGAs identified in other plant species, especially Solanaceae plants, suggesting the existence of common ancestors. Wide genetic diversity of eggplant RGAs was observed both in interspecific and intraspecific sequences, and eight distinct families of eggplant RGAs were identified. Further studies revealed a high average ratio of synonymous to non-synonymous substitution and a low level of recombination. These results suggest that NBS-encoding sequences of RGAs in cultivated and wild eggplants are subject to gradual accumulation of mutations leading to purifying selection. This is the first report of NBS–LRR class RGAs in eggplants.  相似文献   

14.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

15.
Most known plant disease-resistance genes (R genes) include in their encoded products domains such as a nucleotide-binding site (NBS) or leucine-rich repeats (LRRs). Sequences with unknown function, but encoding these conserved domains, have been defined as resistance gene analogues (RGAs). The conserved motifs within plant NBS domains make it possible to use degenerate primers and PCR to isolate RGAs. We used degenerate primers deduced from conserved motifs in the NBS domain of NBS-LRR resistance proteins to amplify genomic sequences from Lens species. Fragments from approximately 500-850 bp were obtained. The nucleotide sequence analysis of these fragments revealed 32 different RGA sequences in Lens species with a high similarity (up to 91%) to RGAs from other plants. The predicted amino acid sequences showed that lentil sequences contain all the conserved motifs (P-loop, kinase-2, kinase-3a, GLPL, and MHD) present in the majority of other known plant NBS-LRR resistance genes. Phylogenetic analyses grouped the Lens NBS sequences with the Toll and interleukin-1 receptor (TIR) subclass of NBS-LRR genes, as well as with RGA sequences isolated from other legume species. Using inverse PCR on one putative RGA of lentil, we were able to amplify the flanking regions of this sequence, which contained features found in R proteins.  相似文献   

16.
The nucleotide binding site and leucine rich repeat (NBS–LRR) class of R genes is the most comprehensively studied in terms of sequence evolution; however, in coconut palm and, more generally, in the family of Arecaceae, our understanding of the evolution of these genes is rather limited. In this study, disease resistance gene candidates (RGCs) of the nucleotide binding site (NBS) type of coconut palm were used to investigate evolutionary relationships in Arecaceae, Poaceae and Brassicaceae species. The results indicate a species-specific evolution of RGCs in coconut palm. However, strikingly similar RGCs between species of Arecales indicate a high conservation of specific RGCs of this family, suggesting a monophyletic origin of three genera. The phylogenetic relationship between RGCs of Arecales and Brassicales suggests that these sequences possibly emerged before being divided between monocots and dicots. Finally the comparative analysis of the expression of four RGCs in healthy coconut palm and those affected with lethal yellowing disease revealed differences in their expression profiles. This study provides new insights for future efforts towards the improvement of disease resistance in coconut palm and other species of Arecaceae.  相似文献   

17.
为研究云南野生蔷薇属中的NBS类抗病基因,根据已知抗病基因NBSLRR序列中的保守区域设计简并引物,利用RTPCR技术从云南悬钩子蔷薇中进行体外扩增,获得了对应区域的cDNA片段,回收、克隆这些特异片段,测序分析,共得到4个含有NBSLRR保守结构域的抗病基因同源序列(RGAs),分别命名为AC9、AC39、AC50和AC68。它们与已报道的11个NBS类抗病基因相应区段的氨基酸序列相似性为5.4%~79.2%,其中这4个RGAs片段与Mi、RPS2、Pib和RPM1基因聚为一类。表明这4条RGAs序列可进一步用作悬钩子蔷薇抗病候选基因的分子筛选及遗传图谱的构建。  相似文献   

18.
Western white pine ( Pinus monticola Dougl. ex. D. Don., WWP) shows genetic variation in disease resistance to white pine blister rust ( Cronartium ribicola). Most plant disease resistance (R) genes encode proteins that belong to a superfamily with nucleotide-binding site domains (NBS) and C-terminal leucine-rich repeats (LRR). In this work a PCR strategy was used to clone R gene analogs (RGAs) from WWP using oligonucleotide primers based on the conserved sequence motifs in the NBS domain of angiosperm NBS-LRR genes. Sixty-seven NBS sequences were cloned from disease-resistant trees. BLAST searches in GenBank revealed that they shared significant identity to well-characterized R genes from angiosperms, including L and M genes from flax, the tobacco N gene and the soybean gene LM6. Sequence alignments revealed that the RGAs from WWP contained the conserved motifs identified in angiosperm NBS domains, especially those motifs specific for TIR-NBS-LRR proteins. Phylogenic analysis of plant R genes and RGAs indicated that all cloned WWP RGAs can be grouped into one major branch together with well-known R proteins carrying a TIR domain, suggesting they belong to the subfamily of TIR-NBS-LRR genes. In one phylogenic tree, WWP RGAs were further subdivided into fourteen clusters with an amino acid sequence identity threshold of 75%. cDNA cloning and RT-PCR analysis with gene-specific primers demonstrated that members of 10 of the 14 RGA classes were expressed in foliage tissues, suggesting that a large and diverse NBS-LRR gene family may be functional in conifers. These results provide evidence for the hypothesis that conifer RGAs share a common origin with R genes from angiosperms, and some of them may play important roles in defense mechanisms that confer disease resistance in western white pine. Ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) in the WWP NBS domains were greater than 1 or close to 1, indicating that diversifying selection and/or neutral selection operate on the NBS domains of the WWP RGA family.  相似文献   

19.
Comparative study of disease resistance genes in crop plants and their relatives provides insight on resistance gene function, evolution and diversity. Here, we studied the allelic diversity of the Lr10 leaf rust resistance gene, a CC‐NBS‐LRR coding gene originally isolated from hexaploid wheat, in 20 diploid and tetraploid wheat lines. Besides a gene in the tetraploid wheat variety ‘Altar’ that is identical to the hexaploid wheat Lr10, two additional, functional resistance alleles showing sequence diversity were identified by virus‐induced gene silencing in tetraploid wheat lines. In contrast to most described NBS‐LRR proteins, the N‐terminal CC domain of LR10 was found to be under strong diversifying selection. A second NBS‐LRR gene at the Lr10 locus, RGA2, was shown through silencing to be essential for Lr10 function. Interestingly, RGA2 showed much less sequence diversity than Lr10. These data demonstrate allelic diversity of functional genes at the Lr10 locus in tetraploid wheat, and these new genes can now be analyzed for agronomic relevance. Lr10‐based resistance is highly unusual both in its dependence on two, only distantly, related CC‐NBS‐LRR proteins, as well as in the pattern of diversifying selection in the N‐terminal domain. This indicates a new and complex molecular mechanism of pathogen detection and signal transduction.  相似文献   

20.
Chini A  Loake GJ 《Planta》2005,221(4):597-601
The activated disease resistance (ADR) 1 gene encodes a protein that possesses an N-terminal coiled-coil (CC) motif, nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. ADR1 belongs to a small, atypical Arabidopsis thaliana sub-class containing four CC–NBS–LRR genes. The NBS region of most NBS–LRR proteins possesses numerous conserved motifs. In contrast, the LRR domain, which is subject to positive selection, is highly variable. Surprisingly, sequence analysis revealed that the LRR domain of the ADR1 sub-class was more conserved than the NBS region. Sequence analysis identified two novel conserved motifs, termed TVS and PKAE, specific for this CC–NBS–LRR sub-class. The TVS motif is adjacent to the P-loop, whereas the PKAE motif corresponded to the inter-domain region termed the NBS–LRR linker, which was conserved within the different CC–NBS–LRR classes but varied among classes. These ADR1-specific motifs were employed to identify putative ADR1 homologs in phylogenetically distant and agronomically important plant species. Putative ADR1 homologs were identified in 11 species including rice and in 3 further Poaceae species. The ADR1 sub-class of CC–NBS–LRR proteins is therefore conserved in both monocotyledonous and dicotyledonous plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号