首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vasopression increases sinusoidal efflux of GSH in the perfused rat liver. The mechanism of this effect was studied in the perfused rat liver and in isolated rat hepatocytes. Vasopressin stimulated GSH efflux in both systems and a V1-receptor antagonist (OPC-21268) significantly inhibited the effect of vasopressin suggesting that vasopressin stimulates GSH efflux from rat hepatocytes via V1-receptor.  相似文献   

2.
Thiol and glutathione (GSH) efflux across the sinusoidal plasma membrane in isolated perfused rat liver was stimulated by addition of hormones such as vasopressin, phenylephrine and adrenaline, whereas glucagon or dibutyryl cyclic AMP were without effect. Phenylephrine and adrenaline effects were sensitive to prazosin and phentolamine, respectively. The increase in thiol efflux was largely accounted for by an increase in GSH efflux. Thiol efflux and the hormone effects were abolished in GSH-depleted liver. Biliary GSH efflux was diminished upon hormone addition. The newly discovered hormone-dependence of GSH release across the sinusoidal plasma membrane may explain the known loss of GSH during conditions of experimental shock (traumatic or endotoxin) and stress and peripheral inflammation.  相似文献   

3.
The short-term regulation of multidrug resistance-associated protein 3 (Mrp3/MRP3) by cAMP and PKC was investigated in sandwich-cultured rat and human hepatocytes and isolated perfused rat livers. The modulator glucagon (500 nM) and the phorbol ester PMA (0.1 muM) were utilized to increase intracellular cAMP and PKC levels, respectively. In glucagon-treated rat hepatocytes, efflux of the Mrp3 substrate 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF) increased approximately 1.5-fold, even in hepatocytes treated with the organic anion transporter (Oatp) inhibitor sulfobromophthalein (BSP). Confocal microscopy revealed more concentrated Mrp3 fluorescence in the basolateral membrane (less diffuse staining pattern) with glucagon treatment. PMA had no effect on Mrp3 activity or localization in sandwich-cultured rat hepatocytes. Glucagon and PMA treatment in isolated perfused rat livers resulted in a threefold increase (14 +/- 4.6 mul.min(-1).g liver(-1)) and a fourfold decrease (1.3 +/- 0.3 mul.min(-1).g liver(-1)) in CDF basolateral clearance compared with control livers (4.7 +/- 2.3 mul.min(-1).g liver(-1)), whereas CDF biliary clearance was not statistically different. In sandwich-cultured human hepatocytes, glucagon treatment resulted in a 1.3-fold increase in CDF efflux and a concomitant increase in MRP3 fluorescence in the basolateral membrane. In summary, cAMP and PKC appear to be involved in the short-term regulation of Mrp3/MRP3, as demonstrated by alterations in activity and localization in rat and human hepatocytes.  相似文献   

4.
The effects of glucagon on the concentration and output of cAMP were studied in liver slices and in perfused livers from female rats and from animals treated with ethynyl estradiol (15 μg/kg daily for 14 days). The basal content of cAMP in liver slices, or of cAMP released into the perfusion medium in the absence of glucagon, was unaffected by prior treatment of the animal with estrogen. When glucagon was added to the medium, the concentration of cAMP in liver slices was 2.29 ± 0.32 and 1.10 ± 0.11 pmol cAMP/mg wet weight from control and ethynyl estradiol treated rats, respectively. When glucagon was added, the output of cAMP by perfused livers was maximal at 20 minutes with livers from either control or ethynyl estradiol treated rats. Output of cAMP by the perfused liver, when glucagon was added to the medium, was 8.76 ± 0.69 and 1.84 ± 0.08 nmol/g by livers from control and ethynyl estradiol treated rats, respectively. This effect was the same whether animals had been fasted for 12 hours previously, or were allowed free access to food until sacrifice. Clearly, as measured by cAMP accumulation, prior treatment of the rat with ethynyl estradiol reduced the sensitivity of the hepatic cAMP response to glucagon.  相似文献   

5.
We have examined the influence of extracellular pH and calcium concentration on the action of glucagon on isolated rat hepatocytes, perfused liver or plasma membrane preparations. Incubation of rat hepatocytes with 10 nM glucagon at pH 7.4 caused an immediate increase in cAMP concentrations (8-fold), and this rise was almost 50% lower at acidic extracellular pH (6.9). This effect of pH could not be explained by an alteration of the hormone binding to its receptor for glucagon concentrations higher than 1 nM. The effect of acidosis on cAMP production was still present with non-hormonal effectors, such as 10 microM Gpp[NH]p, 30 microM forskolin or 10 mM NaF. This suggests a direct action of acidosis on the regulatory component Ns and/or on the catalytic subunit of adenylate cyclase. Acidic pH also depressed mitochondrial processes responsive to glucagon (NAD(P)H fluorescence, glutamine breakdown). Whatever the experimental model, calcium appeared to be required for maximal stimulation of cAMP production by glucagon. On perfused rat liver, glycogenolysis was depressed in the absence of extracellular calcium in the perfusate. In isolated hepatocytes, the stimulation of phosphorylase alpha activity by glucagon was modulated by extracellular calcium concentrations lower than 0.2 mM. This suggests that, although glucagon action is chiefly cAMP-mediated, its effect on calcium mobilization (affecting various cellular process, including cAMP production itself) should also be taken into account. This work also confirmed the importance of calcium in the stimulation of mitochondrial metabolism of glutamine by glucagon.  相似文献   

6.
During prolonged sepsis, impairment of glucose supply by the liver leads to hypoglycemia. Our aim was to investigate whether proinflammatory cytokine interleukin-6, a major mediator of the hepatic acute phase reaction, could contribute to this impairment by inhibiting hepatic glucose production stimulated by glucagon or isoproterenol in rat hepatocytes. Interleukin-6 inhibited the stimulation of glucose formation from glycogen by glucagon but not by isoproterenol in cultured rat hepatocytes. This was confirmed in the perfused rat liver. In cultured hepatocytes, the increase in cyclic adenosine-3',5'-monophosphate formation by glucagon was inhibited by interleukin-6, which was probably due to attenuation of glucagon binding to the glucagon receptor. The increase in cyclic adenosine-3',5'-monophosphate stimulated by isoproterenol was not affected by interleukin-6. However, the cytokine inhibited both expression of the key gluconeogenic control enzyme, phosphoenolpyruvate carboxykinase, stimulated by glucagon and isoproterenol. Thus, while increased glucose demand during the acute-phase reaction might initially be accomplished by catecholamine-mediated stimulation of glucose formation from glycogen, inhibition of gluconeogenesis by interleukin-6 may contribute to the impairment of glucose homeostasis during the prolonged acute phase reaction.  相似文献   

7.
T Mine  S Kimura  H Osawa  E Ogata 《Life sciences》1986,38(25):2285-2292
Cobalt ions (2 mM) inhibited the glycogenolysis induced by phenylephrine and glucagon in perfused rat liver. Cobalt ions also inhibited 45Ca++ efflux from prelabelled livers induced by phenylephrine and glucagon. In addition, they inhibited the rise in tissue levels of cyclic AMP caused by glucagon, but did not inhibit the stimulation of 45Ca++ efflux or glycogenolysis by cyclic AMP or dibutyryl cyclic AMP. The specific binding of glucagon and alpha-agonist to hepatocytes was not inhibited by cobalt ions. These data suggest that cobalt ions, presumably through their high affinity for calcium binding sites on membranes inhibit the stimulation of glycogenolysis by phenylephrine and glucagon in distinct ways; one by inhibiting calcium mobilization and the other by inhibiting cyclic AMP production. Therefore, it is conceivable that membrane-bound calcium plays an important role in stimulating Ca++ mobilization by phenylephrine, and cyclic AMP production by glucagon.  相似文献   

8.
In the absence of any exogenous substrates, glucagon (1 X 10(-9) M) stimulated 45Ca2+ efflux from perfused livers derived from fed rats but not in livers of 24-h-fasted animals. In livers of 24-h-fasted animals perfused under conditions which would decrease cellular NAD(P)H/NAD(P)+ ratio (pyruvate (2.0 mM) or acetoacetate (10.0 mM], glucagon (1 X 10(-9) M) did not stimulate 45Ca2+ efflux. Similarly, in livers of 24-h-fasted animals perfused with substrates which increase cellular NAD(P)H content (lactate (2.0 mM) or beta-hydroxybutyrate (10.0 mM], glucagon (1 X 10(-9) M) did not increase 45Ca2+ efflux. Glucagon (1 X 10(-9) M) elicited an increase in 45Ca2+ efflux from livers of 24-h-fasted animals, only when the livers were perfused with [lactate]/[pyruvate] and [beta-hydroxybutyrate]/[acetoacetate] ratios similar to those reported for livers of fed rats. Stimulation of 45Ca2+ efflux elicited by either 8-CPT-cAMP, a cAMP analog, or high glucagon concentrations (1 X 10(-8) M) was not affected whether livers were perfused with pyruvate (2.0 mM) or lactate (2.0 mM). Administration of isobutylmethylxanthine (50 microM) alone, or glucagon (1 X 10(-9) M) in the presence of isobutylmethylxanthine (50 microM) stimulated 45Ca2+ efflux from livers of 24-h-fasted animals perfused with pyruvate (2.0 mM) but not from livers perfused with lactate (2.0 mM). The ability of glucagon (1 X 10(-9) M) to elevate tissue cAMP levels was also regulated by the oxidation-reduction state of the livers. The data indicate that glucagon-stimulated 45Ca2+ efflux from perfused livers is mediated via cAMP and is dependent on the oxidation-reduction state of the livers.  相似文献   

9.
Using isolated rat hepatocytes we have shown that glutathione (GSH) depletion by glutathione-S-transferase (GST)-catalyzed conjugation with 1-bromoheptane or phorone was accompanied by a significant elevation in ascorbate synthesis. Glycogenolysis was also stimulated without a significant rise in glucose synthesis. Furthermore, when glycogenolysis was stimulated in control hepatocytes by increasing intracellular cAMP levels (with glucagon or dibutyryl cAMP), cellular glucose levels, but not ascorbate levels, increased. These data suggest that GSH depletion can stimulate ascorbate synthesis independently of glucose synthesis and that hepatocytes can direct glycogenolysis towards ascorbate synthesis during GSH conjugation.  相似文献   

10.
A Romani  A Scarpa 《FEBS letters》1990,269(1):37-40
The addition of norepinephrine to perfused rat livers and to collagenase isolated hepatocytes induced a marked and dose-dependent magnesium efflux. The addition of beta-adrenergic receptor antagonists, but not alpha-antagonists, completely blocked the Mg2+ efflux. The Mg2+ efflux could also be induced by forskolin and by permeable cAMP analogues. By contrast, the addition of carbachol or vasopressin induced a Mg2+ influx into isolated hepatocytes. These results indicate that a significant Mg2+ efflux from liver cells can be induced through the beta-adrenergic receptors and that it is mediated through the cytosolic cAMP levels.  相似文献   

11.
Production of [14C]glucose from [14C]lactate in the perfused livers of 24-h fasted adrenalectomized rats was not stimulated by 1 nM glucagon but was significantly increased by 10 nM hormone. Crossover analysis of glycolytic intermediates in these livers revealed a significant reduction in glucagon action at site(s) between fructose 6-phosphate and fructose 1,6-bisphosphate as a result of adrenalectomy. Site(s) between pyruvate and P-enolpyruvate was not affected. In isolated hepatocytes, adrenalectomy reduced glucagon response in gluconeogenesis while not affecting glucagon inactivation of pyruvate kinase. A distinct lack of glucagon action on 6-phosphofructo-1-kinase activity was noted in these cells. When hepatocytes were incubated with 30 mM glucose, lactate gluconeogenesis was greatly stimulated by glucagon. A reduction in both sensitivity and responsiveness to the hormone in gluconeogenesis was seen in the adrenalectomized rat. These changes were well correlated with similar impairment in glucagon action on 6-phosphofructo-1-kinase activity and fructose 2,6-bisphosphate content in hepatocytes from adrenalectomized rats incubated with 30 mM glucose. These results suggest that adrenalectomy impaired the gluconeogenic action of glucagon in livers of fasted rats at the level of regulation of 6-phosphofructo-1-kinase and/or fructose 2,6-bisphosphate content.  相似文献   

12.
In isolated perfused rat livers, infusion of phorbol 12-myristate 13-acetate (PMA) (150 nM) resulted in a 3-fold stimulation of the rate of glucose production. This response was maximal at a perfusate PMA concentration of 150 nM, and was significantly diminished at higher concentrations of PMA (e.g. 300 nM). Stimulation of glycogenolysis by PMA was greatly decreased in livers perfused with Ca2+-free medium. PMA infusion into livers perfused in the absence of Ca2+ did not result in Ca2+ efflux from the livers. Additionally, in hepatocytes isolated from livers of fed rats, neither PMA nor 1-oleoyl-2-acetyl-rac-glycerol stimulated the rate of glucose production. Although indomethacin has been demonstrated to block PMA-stimulated hepatic glycogenolysis [Garcia-Sainz & Hernandez-Sotomayor (1985) Biochem. Biophys. Res. Commun. 132, 204-209], infusion of PMA into perfused rat livers did not alter the rates of production of either prostaglandin E2 or 6-oxo-prostaglandin F1 alpha in the livers. These data, along with the observed increases in the perfusion pressure and decrease in O2 consumption in isolated perfused livers suggest that phorbol-ester-stimulated glycogenolysis is not a consequence of a direct effect of phorbol ester on liver parenchymal cells.  相似文献   

13.
The injection of streptozotocin to 18-day-old rat fetuses induced, 2 days later, a 50% fall in plasma insulin and a twofold increase in plasma glucagon concentrations and liver cAMP levels. Phosphoenolpyruvate carboxykinase mRNA that were undetectable in the fetal rat liver, accumulated 48 h after streptozotocin injection, their concentration being 30% of that found in the liver of 1-day-old newborn rats in whom liver phosphoenolpyruvate carboxykinase gene expression is maximal. Physiological concentrations of glucagon (0.7 +/- 0.2 nM) induced, within 2 h, phosphoenolpyruvate carboxykinase mRNA accumulation in cultured hepatocytes from 20-day-old fetuses. The addition of insulin (0.01-100 nM) inhibits, by no more than 30%, the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation. Exposure of fetal hepatocytes to insulin for 24 h did not change the glucagon dose/response curve and did not lead to a more efficient inhibition of the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation, despite a clear stimulatory effect on the rate of lipogenesis. In contrast, when hepatocytes were cultured in the presence of dexamethasone, the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation can be totally inhibited by pharmacological concentrations of insulin (10 nM). From these in-vivo and in-vitro studies, it is concluded that, under physiological conditions, the postnatal rise in plasma glucagon concentration is more important than the fall in the plasma insulin concentration for the primary induction of liver phosphoenolpyruvate carboxykinase gene expression.  相似文献   

14.
Isolated perfused fed rat livers spontaneously liberated glucose and orthophosphate to the medium; 24-hr fasted rat livers did not exhibit these phenomena. In perfused fed rat livers, glucagon (2 mug) increased glucose output and promoted orthophosphate incorporation. In perfused fed rat livers, insulin (250 or 500 mU) inhibited the spontaneous liberation of glucose and orthophosphate. Comparable doses of insulin significantly reduced the glucagon (2 mug)-induced increase in glucose output from perfused fed rat liver, but did not affect orthophosphate uptake by the organ.  相似文献   

15.
The changes in intracellular Ca2+ concentration [( Ca2+]i) of hepatocytes induced by certain bile acids are biphasic: an initial increase is followed by a more gradual decrease. This latter decline in [Ca2+]i may be due to an efflux of Ca2+ across the plasma membrane. This hypothesis was tested by studying the effect of different bile acids on the efflux of 45Ca from preloaded rat hepatocytes and isolated perfused rat livers. The following bile acids were studied: cholic (C), ursodeoxycholic (UDC), chenodeoxycholic (CDC), and deoxycholic (DC) acids; their taurine (T) conjugates (TC, TUDC, TCDC, and TDC); and the taurine, sulfate (S), and glucuronide (Glu) derivatives of lithocholic acid (TLC, LS, TLS, and LGlu, respectively). At 0.3 mM, all bile acids except C, TC, TCDC, UDC, and TUDC significantly increased 45Ca efflux from preloaded hepatocytes without affecting cell viability. Dose-response studies revealed that the minimum effective concentration needed to induce 45Ca efflux was 0.06 mM for LS, 0.8 mM for TCDC, and 10 mM for TC. Efflux of 86Rb from preloaded hepatocytes was not significantly altered by 0.1 mM LS, indicating relative specificity for calcium. TDC and DC, but not TC, increased 45Ca efflux from preloaded perfused rat livers. These results showed that bile acids known to increase [Ca2+]i (CDC, DC, TDC, and TLC) also increased 45Ca efflux from hepatocytes and perfused livers and that efflux was also stimulated by LS, TLS, and LGlu. The extent of this efflux was related to the hydrophobicity of the steroid nucleus of the bile acid. It is speculated that bile acid-induced increases in [Ca2+]i activate the plasma membrane Ca2+ pump resulting in increased Ca2+ efflux.  相似文献   

16.
Recent Studies have demonstrated that glucagon-like peptide-1 (GLP)(7-37) has more potent insulinotropic activity than glucagon. We therefore examined the effect of GLP-1(7-37) on liver metabolism using rat liver perfusion system. Ten nM GLP-1(7-37) did not affect glucose, ketone body and cAMP outputs from the perfused liver. Whereas, the same dose of glucagon stimulated these outputs significantly. When 10 nM GLP-1(7-37) perfused 5 min before the administration of 10 nM glucagon, the above stimulatory effects of glucagon were not affected. These results indicate that truncated GLP-1 has no effect on hepatic glycogenolysis and ketogenesis dissociating from its potent insulinotropic activity.  相似文献   

17.
The ability of noradrenaline (1 microM), phenylephrine (10 microM), and isoproterenol (1 microM) to stimulate glycogenolysis in euthyroid and hypothyroid perfused rat livers was investigated. It was found that hypothyroidism severely impaired alpha-receptor-mediated (noradrenaline, phenylephrine) glucose release. The initial Ca2+ efflux and K+ influx induced by these agonists in the euthyroid control group were almost totally absent in the hypothyroid group, while glycogen phosphorylase a activity in the hypothyroid rat livers was markedly lower than in the controls after infusing noradrenaline for 1 min. Diminished CA2+ efflux (and possibly diminished K+ influx) is likely to play a role in the large impairment in the action of noradrenaline or phenylephrine on glycogenolysis in the perfused hypothyroid rat liver. After prolonged stimulation (15 min) with noradrenaline, however, the phosphorylase a activity in the hypothyroid and euthyroid groups did not differ significantly. This was accompanied by Ca2+ influx in the hypothyroid livers, probably facilitated by a beta-adrenergic effect of noradrenaline in this group. Hypothyroidism potentiated the effect of isoproterenol on glycogenolysis. The glucose 6-phosphate content in the hypothyroid rat livers was markedly higher than in the euthyroid group after stimulation by noradrenaline or isoproterenol.  相似文献   

18.
alpha-Adrenergic stimulation of hepatocytes prevented, in a dose-dependent manner, the stimulation of [U-14C]lactate conversion to [14C]glucose by glucagon and exogenously added cAMP and Bt2cAMP. The inhibition was referable to an interaction with adrenergic receptors which resulted in a small decrease in hepatic cAMP levels. Low concentrations of epinephrine (10 nM) were able to inhibit phosphorylase activation and glucose output elicited by low doses of glucagon (5 X 10(-11) M to 2 X 10(-10) M). The ability of epinephrine (acting via alpha 1-adrenergic receptors), vasopressin, and angiotensin II to elicit calcium efflux was inhibited by glucagon, suggesting that intracellular redistributions of Ca2+ are importantly involved in the gluconeogenic process. It is proposed that vasopressin, angiotensin II, and catecholamines, acting primarily via alpha 1-adrenergic receptors, are responsible for inhibition of glucagon mediated stimulation of gluconeogenesis by altering subcellular calcium redistribution and decreasing cAMP levels.  相似文献   

19.
[1-N alpha-Trinitrophenylhistidine,12-homoarginine]glucagon (THG) is a potent antagonist of the effects of glucagon on liver membrane adenylate cyclase. In isolated hepatocytes, this glucagon analogue was an extremely weak partial agonist for cAMP accumulation, and it blocked the stimulation of cAMP accumulation produced by glucagon. However, THG was a full agonist for the stimulation of glycogenolysis, gluconeogenesis and urea synthesis in rat hepatocytes, and did not antagonize the metabolic effects of glucagon under most of the conditions examined. Forskolin potentiated the stimulation of cAMP accumulation produced by glucagon or THG, but did not potentiate their metabolic actions. A much larger increase in cAMP levels seemed to be required for the stimulation of hepatocyte metabolism by forskolin than by glucagon or THG. This may suggest the existence of a functional compartmentation of cAMP in rat hepatocytes. The possible existence of compartments in cAMP-mediated hormone actions and the involvement of factors, besides cAMP, in mediating the effects of THG and glucagon is suggested.  相似文献   

20.
[1-Nα-Trinitrophenylhistidine,12-homoarginine]glucagon (THG) is a potent antagonist of the effects of glucagon on liver membrane adenylate cyclase. In isolated hepatocytes, this glucagon analogue was an extremely weak partial agonist for cAMP accumulation, and it blocked the stimulation of cAMP accumulation produced by glucagon. However, THG was a full agonist for the stimulation of glycogenolysis, gluconeogenesis and urea synthesis in rat hepatocytes, and did not antagonize the metabolic effects of glucagon under most of the conditions examined. Forskolin potentiated the stimulation of cAMP accumulation produced by glucagon or THG, but did not potentiate their metabolic actions. A much larger increase in cAMP levels seemed to be required for the stimulation of hepatocyte metabolism by forskolin than by glucagon or THG. This may suggest the existence of a functional compartmentation of cAMP in rat hepatocytes. The possible existence of compartments in cAMP-mediated hormone actions and the involvement of factors, besides cAMP, in mediating the effects of THG and glucagon is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号