首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacuoles perform multiple functions in plants, and VCL1 (VACUOLESS1) is essential for biogenesis with loss of expression in the vcl1 mutant leading to lethality. Vacuole biogenesis plays a prominent role in gametophytes, yet is poorly understood. Given the importance of VCL1, we asked if it contributes to vacuole biogenesis during pollen germination. To address this question, it was essential to first understand the dynamics of vacuoles. A tonoplast marker, delta-TIP::GFP, under a pollen-specific promoter permitted the examination of vacuole morphology in germinating pollen of Arabidopsis. Our results demonstrate that germination involves a complex, yet definable, progression of vacuole biogenesis. Pollen vacuoles are extremely dynamic with remarkable features such as elongated (tubular) vacuoles and highly mobile cytoplasmic invaginations. Surprisingly, vcl1 did not adversely impact vacuole morphology in pollen germinated in vitro. To focus further on VCL1 in pollen, reciprocal backcrosses demonstrated reduced transmission of vcl1 through male gametophytes, indicating that vcl1 was expressive after germination. Interestingly, vcl1 affected the fertility of female gametophytes that undergo similarly complex vacuole biogenesis. Our results indicate that vcl1 is lethal in the sporophyte but is not fully expressive in the gametophytes. They also point to the complexity of pollen vacuoles and suggest that the mechanism of vacuole biogenesis in pollen may differ from that in other plant tissues.  相似文献   

2.
Lee Y  Kim ES  Choi Y  Hwang I  Staiger CJ  Chung YY  Lee Y 《Plant physiology》2008,147(4):1886-1897
Phosphatidylinositol 3-kinase has been reported to be important for normal plant growth. To characterize the role of the enzyme further, we attempted to isolate Arabidopsis (Arabidopsis thaliana) plants that do not express the gene, but we could not recover homozygous mutant plants. The progeny of VPS34/vps34 heterozygous plants, harboring a T-DNA insertion, showed a segregation ratio of 1:1:0 for wild-type, heterozygous, and homozygous mutant plants, indicating a gametophytic defect. Genetic transmission analysis showed that the abnormal segregation ratio was due to failure to transmit the mutant allele through the male gametophyte. Microscopic observation revealed that 2-fold higher proportions of pollen grains in heterozygous plants than wild-type plants were dead or showed reduced numbers of nuclei. Many mature pollen grains from the heterozygous plants contained large vacuoles even until the mature pollen stage, whereas pollen from wild-type plants contained many small vacuoles beginning from the vacuolated pollen stage, which indicated that vacuoles in many of the heterozygous mutant pollen did not undergo normal fission after the first mitotic division. Taken together, our results suggest that phosphatidylinositol 3-kinase is essential for vacuole reorganization and nuclear division during pollen development.  相似文献   

3.
Intracellular Na(+)/H(+) (NHX) antiporters have important roles in cellular pH and Na(+), K(+) homeostasis. The six Arabidopsis thaliana intracellular NHX members are divided into two groups, endosomal (NHX5 and NHX6) and vacuolar (NHX1 to NHX4). Of the vacuolar members, NHX1 has been characterized functionally, but the remaining members have largely unknown roles. Using reverse genetics, we show that, unlike the single knockouts nhx1 or nhx2, the double knockout nhx1 nhx2 had significantly reduced growth, smaller cells, shorter hypocotyls in etiolated seedlings and abnormal stamens in mature flowers. Filaments of nhx1 nhx2 did not elongate and lacked the ability to dehisce and release pollen, resulting in a near lack of silique formation. Pollen viability and germination was not affected. Quantification of vacuolar pH and intravacuolar K(+) concentrations indicated that nhx1 nhx2 vacuoles were more acidic and accumulated only 30% of the wild-type K(+) concentration, highlighting the roles of NHX1 and NHX2 in mediating vacuolar K(+)/H(+) exchange. Growth under added Na(+), but not K(+), partly rescued the flower and growth phenotypes. Our results demonstrate the roles of NHX1 and NHX2 in regulating intravacuolar K(+) and pH, which are essential to cell expansion and flower development.  相似文献   

4.
Pollen hydration is usually tightly regulated and occurs in vivo only when desiccated pollen grains acquire water from the female, thus enabling pollen tube growth. Pollen tubes are easily visualized by staining with decolorized aniline blue, a stain specific for callose. We identified a mutant, raring-to-go, in which pollen grains stained for callose before anther dehiscence. When raring-to-go plants are transferred to high humidity, pollen tubes dramatically elongate within the anther. As early as the bicellular stage, affected pollen grains in raring-to-go plants acquire or retain water within the anther, and precociously germinate. Thus, the requirement for contact with the female is circumvented. We used pollen tetrad analysis to show that raring-to-go is a gametophytic mutation, to our knowledge the first gametophytic mutation in Arabidopsis that affects early events in the pollination pathway. To aid in identifying raring-to-go alleles, we devised a new technique for screening pollen in bulk with decolorized aniline blue. We screened a new M(1) mutagenized population and identified several additional mutants with a raring-to-go-like phenotype, demonstrating the usefulness of this technique. Further, we isolated other mutants (gift-wrapped pollen, polka dot pollen, and emotionally fragile pollen) with unexpected patterns of callose staining. We suggest that raring-to-go and these other mutants may help dissect components of the pathway that regulates pollen hydration and pollen tube growth.  相似文献   

5.
Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.  相似文献   

6.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

7.
Vacuolar solute accumulation is an important process during plant development, growth and stress responses. Although several vacuolar carriers have been identified recently, knowledge regarding the regulation of transport is still limited. Solute accumulation may be controlled by various factors, such as alterations in carrier abundance or activity. Phosphorylation via kinases is a well-known principle for activation or deactivation of proteins. Several phosphorylated proteins have been identified in the tonoplast proteome; however, kinases that catalyse the phosphorylation of tonoplast proteins are currently unknown. The tonoplast monosaccaride transporter from Arabidopsis (AtTMT1) and its homologue from barley have multiple phosphorylation sites in their extremely large loops. Here we demonstrate that the loop of AtTMT1 interacts with a mitogen-activated triple kinase-like protein kinase (VIK), that an aspartate-rich loop domain is required for effective interaction, and that the presence of VIK stimulates glucose import into isolated vacuoles. Furthermore, the phenotype of VIK loss-of-function plants strikingly resembles that of plants lacking AtTMT1/2. These data suggest that VIK-mediated phosphorylation of the AtTMT1 loop enhances carrier activity and consequently vacuolar sugar accumulation. As many phosphorylated proteins have been identified in the tonoplast, differential phosphorylation may be a general mechanism regulating vacuolar solute import.  相似文献   

8.
Self-incompatibility (SI) systems appeared early in plant evolution as an effective mechanism to promote outcrossing and avoid inbreeding depression. These systems prevent self-fertilization by the recognition and rejection of self-pollen and pollen from closely related individuals. The most widespread SI system is based on the action of a pistil ribonuclease, the S-RNase, which recognizes and rejects incompatible pollen. S-RNases are endocyted by pollen tubes and stored into vacuoles. By a mechanism that is still unknown, these vacuoles are selectively disrupted in incompatible pollen, releasing S-RNases into the cytoplasm and allowing degradation of pollen RNA. Recently, we have studied the timing of in vivo alterations of pollen F-actin cytoskeleton after incompatible pollinations. Besides being essential for pollen growth, F-actin cytoskeleton is a very dynamic cellular component. Changes in F-actin organization are known to be capable of transducing signaling events in many cellular processes. Early after pollination, F-actin showed a progressive disorganization in incompatible pollen tubes. However by the time the F-actin was almost completely disrupted, the large majority of vacuolar compartments were still intact. These results indicate that in incompatible pollen tubes F-actin disorganization precedes vacuolar disruption. They also suggest that F-actin may act as an early transducer of signals triggering the rejection of incompatible pollen.  相似文献   

9.
Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. To date, to our knowledge, no direct evidence exists for the involvement of RGPs in a particular biochemical process. The Arabidopsis (Arabidopsis thaliana) genome contains five RGP genes out of which RGP1 and RGP2 share the highest sequence identity. We characterized the native expression pattern of Arabidopsis RGP1 and RGP2 and used reverse genetics to investigate their respective functions. Although both genes are ubiquitously expressed, the highest levels are observed in actively growing tissues and in mature pollen, in particular. RGPs showed cytoplasmic and transient association with Golgi. In addition, both proteins colocalized in the same compartments and coimmunoprecipitated from plant cell extracts. Single-gene disruptions did not show any obvious morphological defects under greenhouse conditions, whereas the double-insertion mutant could not be recovered. We present evidence that the double mutant is lethal and demonstrate the critical role of RGPs, particularly in pollen development. Detailed analysis demonstrated that mutant pollen development is associated with abnormally enlarged vacuoles and a poorly defined inner cell wall layer, which consequently results in disintegration of the pollen structure during pollen mitosis I. Taken together, our results indicate that RGP1 and RGP2 are required during microspore development and pollen mitosis, either affecting cell division and/or vacuolar integrity.  相似文献   

10.
Summary In the past, in vitro cultures of excised anthers and isolated pollen have been used to study normal male sexual development (gametophytic development) and, conversely, to produce and study haploid plant formation (sporophytic development). For years both branches have existed side by side, without much interaction. Today, a synthesis of the two branches is possible as well as necessary. Recent advances in the technique of isolated pollen culture in the tobacco plant model (Nicotiana tabacum L.) enable the researcher to strictly control pollen development in both the gametophytic and sporophytic direction. The nutritional status of the immature pollen grain at a particular stage of development provides the trigger for its development into one of the two phases found in the alternation of generations undergone by higher plants. In particular, a hunger signal is responsible for the derepression of cell division activity and the start of embryogenesis. Pollen starvation can occur in isolated pollen cultures in sucrose-free media, in excised anthers and flowers, and, under specific growth conditions, during pollen development in vivo.  相似文献   

11.
RICHARDS, A. J., 1990. Studies in Garcinia , dioecious tropical forest trees: the phenology, pollination biology and fertilization of G. hombroniana Pierre . Garcinia hombroniana is a facultative agamosperm which is pollinated by Trigona bees. Nectar is restricted to the large discoid stigma (or pistillode in male flowers), which also captures and hydrates pollen. The 'wet' stigma and binucleate pollen suggest that Garcinia arose from hermaphrodite plants with a gametophytic self-incompatibility system.
On stigmas, nectar is secreted early on three or four successive days. On male pistillodes, nectar is secreted when anthers dehisce, on the second morning after anthesis. Pollen is most viable when freshly collected, but some viability remains four days after collection. Pollen germinates within 24 h of hydration. Similar results to pollinations are obtained by germinating pollen in 1 % sucrose.
Garcinia hombroniana flowers principally from January to June. Cultivated females are considered as 'big bang' strategists. Male flowers are considered as 'steady state' strategists.  相似文献   

12.
Biogenesis and function of the lipidic structures of pollen grains   总被引:31,自引:0,他引:31  
 Pollen grains contain several lipidic structures, which play a key role in their development as male gametophytes. The elaborate extracellular pollen wall, the exine, is largely formed from acyl lipid and phenylpropanoid precursors, which together form the exceptionally stable biopolymer sporopollenin. An additional extracellular lipidic matrix, the pollen coat, which is particularly prominent in entomophilous plants, covers the interstices of the exine and has many important functions in pollen dispersal and pollen-stigma recognition. The sporopollenin and pollen coat precursors are both synthesised in the tapetum under the control of the sporophytic genome, but at different stages of development. Pollen grains also contain two major intracellular lipidic structures, namely storage oil bodies and an extensive membrane network. These intracellular lipids are synthesised in the vegetative cell of the pollen grain under the control of the gametophytic genome. Over the past few years there has been significant progress in elucidating the composition, biogenesis and function of these important pollen structures. The purpose of this review is to describe these recent advances within the historical context of research into pollen development. Received: 1 November 1997 / Revision accepted: 3 February 1998  相似文献   

13.
Pacini E  Jacquard C  Clément C 《Planta》2011,234(2):217-227
Vacuoles of several types can be observed in pollen throughout its development. Their physiological significance reflects the complexity of the biological process leading to functional pollen grains. Vacuolisation always occurs during pollen development but when ripe pollen is shed the extensive translucent vacuoles present in the vegetative parts in previous stages are absent. Vacuole functions vary according to developmental stage but in ripe pollen they are mainly storage sites for reserves. Vacuoles cause pollen to increase in size by water accumulation and therefore confer some degree of resistance to water stress. Modalities of vacuolisation occur in pollen in the same manner as in other tissues. In most cases, autophagic vacuoles degrade organelles, as in the microspore after meiosis, and can be regarded as cytoplasm clean-up following the transition from the diploid sporophytic to the haploid gametophytic state. This also occurs in the generative cell but not in sperm cells. Finally, vacuoles have a function when microspores are used for pollen embryogenesis in biotechnology being targets for stress induction and afterwards contributing to cytoplasmic rearrangement in competent microspores.  相似文献   

14.
花粉管引导是指显花植物在受精过程中,雌蕊组织与花粉管相互作用使花粉管定向生长并最终到达胚囊的过程,其机制颇为复杂。该文基于调控花粉管生长的孢子体引导和配子体细胞引导两个主要过程,阐述雌蕊中不同蛋白分子和其它小分子物质的浓度梯度在花粉管的孢子体组织引导中的作用,以及胚囊中不同类型的细胞及其相关基因与蛋白在花粉管的配子体细胞引导中的作用。同时,该文也对精细胞在花粉管引导中的作用进行了阐述。  相似文献   

15.
16.
In this paper we present results on the vacuolar uptake mechanism for two flavone glucuronides present in rye mesophyll vacuoles. In contrast to barley flavone glucosides (Klein et al. (1996) J. Biol. Chem. 271, 29666-29671), the flavones luteolin 7-O-diglucuronyl-4'-O-glucuronide (R1) and luteolin 7-O-diglucuronide (R2) were taken up into vacuoles isolated from rye via a directly energized mechanism. Kinetic studies suggested that the vacuolar glucuronide transport system is constitutively expressed throughout rye primary leaf development. Competition experiments argued for the existence of a plant MRP-like transporter for plant-specific and non-plant glucuronides such as beta-estradiol 17-(beta-D-glucuronide) (E217G). The interaction of ATP-dependent vacuolar glucuronide uptake with glutathione and its conjugates turned out to be complex: R1 transport was stimulated by dinitrobenzene-GS and reduced glutathione but was inhibited by oxidized glutathione in a concentration-dependent manner. In contrast, R2 uptake was not increased in the presence of reduced glutathione. Thus, the transport system for plant-derived glucuronides differed from the characteristic stimulation of vacuolar E217G uptake by glutathione conjugates but not by reduced glutathione (Klein et al. (1998) J. Biol. Chem. 273, 262-270). Using tonoplast vesicles isolated with an artificial K+ gradient, we demonstrate for the first time for plant MRPs that the ATP-dependent uptake of R1 is membrane-potential dependent. We discuss the kinetic capacity of the ABC-type glucuronide transporter to explain net vacuolar flavone glucuronide accumulation in planta during rye primary leaf development and the possibility of an interaction of potential substrates at both the substrate binding and allosteric sites of the MRP transporter regulating the activity towards a certain substrate.  相似文献   

17.
Actin microfilaments (MFs) participate in many fundamental processes in plant growth and development. Here, we report the co-localization of the actin MF and vacuolar membrane (VM), as visualized by vital VM staining with FM4-64 in living tobacco BY-2 cells stably expressing green fluorescent protein (GFP)-fimbrin (BY-GF11). The MFs were intensively localized on the VM surface and at the periphery of the cytoplasmic strands rather than at their center. The co-localization of MFs and VMs was confirmed by the observation made using transient expression of red fluorescent protein (RFP)-fimbrin in tobacco BY-2 cells stably expressing GFP-AtVam3p (BY-GV7) and BY-2 cells stably expressing gamma-tonoplast intrinsic protein (gamma-TIP)-GFP fusion protein (BY-GG). Time-lapse imaging revealed dynamic movement of MF structures which was parallel to that of cytoplasmic strands. Disruption of MF structures disorganized cytoplasmic strand structures and produced small spherical vacuoles in the VM-accumulating region. Three-dimensional reconstructions of the vacuolar structures revealed a disconnection of these small spherical vacuoles from the large vacuoles. Real-time observations and quantitative image analyses demonstrated rapid movements of MFs and VMs near the cell cortex, which were inhibited by the general myosin ATPase inhibitor, 2,3-butanedion monoxime (BDM). Moreover, both bistheonellide A (BA) and BDM treatment inhibited the reorganization of the cytoplasmic strands and the migration of daughter cell nuclei at early G1 phase, suggesting a requirement for the acto-myosin system for vacuolar morphogenesis during cell cycle progression. These results suggest that MFs support the vacuolar structures and that the acto-myosin system plays an essential role in vacuolar morphogenesis.  相似文献   

18.
双受精是被子植物特有的生殖方式,精细胞只有通过花粉管穿过花柱才能到达子房、胚珠受精。花粉管在母本组织中的生长和引导包括孢子体控制(sporophytic control)和配子体控制(gametophytic control)两个连续的过程,现已克隆出不同阶段花粉管生长和引导的基因,通过分析其表达调控揭示出花粉管生长和引导的分子机制。该文就近年来国内外有关花粉管生长和极性引导的调控机制研究进展进行综述,并对禾本科(Poaceae)和十字花科(Brassicaceae)植物花粉管引导的异同点进行了比较分析。  相似文献   

19.
In higher plant cells, vacuoles show considerable diversity in their shapes and functions. The roles of vacuoles in the storage, osmoregulation, digestion and secretory pathway are well established; however, their functions in cell morphogenesis and cell division are still unclear. To observe the dynamic changes of vacuoles in living plant cells, we attempted to visualize the vacuolar membrane (VM) by pulse-labeling tobacco BY-2 cells with a styryl fluorescent dye, FM4-64. By time-sequence observations using confocal laser scanning microscopy (CLSM), we could follow the dynamics of vacuolar structures throughout the cell cycle in living higher plant cells. We also confirmed the dynamic changes of VM structures by the observation using transgenic BY-2 cells expressing GFP-AtVam3p fusion protein (BY-GV). Furthermore, by using transgenic BY-2 cells that stably express a GFP-tubulin fusion protein [BY-GT16, Kumagai et al. (2001) Plant Cell Physiol. 42: 723], we could study the relationship between the dynamics of vacuoles and microtubules. From these observations, we identified, for the first time, some remarkable events: (1) at the late G(2) phase, tubular structures of the vacuolar membrane developed in the central region of the cell, probably in the premitotic cytoplasmic band (phragmosome), surrounding the mitotic apparatus; (2) from anaphase to telophase, these tubular structures invaded the region of the phragmoplast within which the cell plate was being formed; (3) at the early G(1) phase, some of the tubular structures expanded rapidly between the cell plate and daughter nuclei, and subsequently developed into large vacuoles at interphase.  相似文献   

20.
Studies focusing on gametophytic competition have focused on differences in pollen performance (e.g., pollen germination rate and pollen tube growth rate) among donors in order to examine genetic sources of variation in siring success among them. Donors that produce the fastest growing pollen tubes are expected to fertilize more ovules relative to donors with slow growing pollen tubes under conditions of gametophytic competition. However, the performance of pollen in the field is known to be influenced by environmental conditions in addition to the genotype of donor plants. This field study of Faramea occidentalis was conducted to: (1) determine the effect of environmental conditions during pollination on pollen performance; (2) measure differences among pollen donors in pollen performance; (3) determine if the pollen of different donors responds differently to a variety of environmental conditions surrounding pollinated flowers; and (4) measure differences among pollen recipients in pollen performance. Single-donor crosses were made between four pollen donors and four pollen recipients under a variety of environmental conditions. Pollen performance was then quantified as the growth rate of the fastest pollen tube, the mean pollen tube growth rate, and by a pollen germination index. Pollination environment (the environment surrounding a pollinated flower) and recipient significantly affected all three measures of pollen performance. Pollen donors did not differ overall in pollen performance. However, there was significant among-donor variation in two of the five pollination environment conditions. Future studies of variation in relative siring success may benefit by considering pollination environment in addition to donor and recipient identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号