首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
土壤呼吸是陆地生态系统碳收支的重要组成部分。与森林相比,自然或半自然的灌丛主要分布在养分贫瘠的地区,通常认为它们对环境变化较为敏感。外源氮输入可能会显著影响灌丛的土壤呼吸。迄今为止,人们对大气氮沉降对灌丛土壤呼吸的影响知之甚少。该文通过氮添加试验,研究了北京东灵山荆条(Vitex negundo var.heterophylla)和绣线菊(Spiraea salicifolia)灌丛土壤呼吸及其对不同氮添加水平(对照(0)、低氮(20 kg N·hm~(–2)·a~(–1))、中氮(50 kg N·hm~(–2)·a~(–1))和高氮(100 kg N·hm~(–2)·a~(–1)))的响应。结果表明:自然条件下,荆条和绣线菊灌丛的土壤总呼吸年通量为5.91和4.23 t C·hm~(–2)·a~(–1),异养呼吸通量为5.76和3.53 t C·hm~(–2)·a~(–1),荆条和绣线菊灌丛的总呼吸和异养呼吸均与土壤温度呈显著的指数关系。荆条和绣线菊灌丛土壤总呼吸温度敏感性系数(Q_(10))的变化范围分别为1.44–1.58和1.43–1.98,异养呼吸Q10的变化范围分别为1.38–2.11和1.49–1.88。短期氮添加抑制了荆条灌丛的自养呼吸,而对土壤总呼吸和异养呼吸影响不明显;氮添加促进了绣线菊灌丛的异养呼吸,而对土壤总呼吸和自养呼吸均无显著影响;氮添加对两种灌丛土壤呼吸年通量及土壤总呼吸Q10均无显著影响。  相似文献   

2.
模拟氮沉降凋落物管理对樟树人工林土壤呼吸的影响   总被引:1,自引:0,他引:1  
陈毅  闫文德  郑威  廖菊阳  盘昱良  梁小翠  杨坤 《生态学报》2018,38(21):7830-7839
以湖南省植物园樟树人工林为对象,研究了模拟氮沉降下,不同凋落物处理对土壤呼吸的影响。设置4个施氮水平,分别为CK(0 kg N hm~(-2)a~(-1))、LN(50 kg N hm~(-2)a~(-1))、NM(150 kg N hm~(-2)a~(-1))以及HN(300 kg N hm~(-2)a~(-1));凋落物处理分别为去除凋落物、添加凋落物以及凋落物对照组。经过为期2年的观测研究,结果表明:(1)模拟氮沉降不同凋落物处理下,土壤温度呈现显著的季节性变化,但不存在显著差异;土壤湿度呈现显著的波动性变化,施氮及凋落物管理对土壤温度无影响。土壤湿度仅受凋落物管理的影响。在不同施氮水平下,去除凋落物的土壤湿度与加倍凋落物的土壤湿度均存在显著差异性。(2)模拟氮沉降不同凋落物处理下,土壤呼吸均呈现显著的季节性变化,最大值出现在6—8月;最小值出现在1月,且在生长季期间(4—8月),不同处理下土壤呼吸存在显著差异。(3)施氮对土壤呼吸表现为抑制作用,添加凋落物对土壤呼吸起促进作用,去除凋落物对土壤呼吸起抑制作用。(4)在凋落物对照组中,LN、MN、HN较CK相比,土壤呼吸速率年均值分别降低了35.4%、30.6%、36.8%,且各施氮水平与CK存在显著差异(P0.05);添加凋落物处理下,LN、MN、HN处理较CK相比,土壤呼吸速率年均值土壤呼吸分别降低了23.2%、15.8%、14.7%。去除凋落物处理下,LN、MN、HN较CK相比,土壤呼吸速率年均值分别降低了3.5%、0.5%、-11.6%。且添加或去除凋落物均能削弱施氮对土壤呼吸的抑制作用,且这种作用随着施氮水平的增加而增大。(5)土壤呼吸与5 cm处土壤温度存在显著相关性(P0.05),土壤温度可解释土壤呼吸变异的47.76%—72.61%;与土壤湿度呈现正相关,但未达到显著相关水平(P0.05)。  相似文献   

3.
为揭示长期施氮对油松林凋落物量的影响,在山西省太岳山油松天然林和人工林中进行了长达7年的氮添加控制试验,包括对照(CK)、低氮(LN)、中氮(MN)和高氮(HN)4个水平,分别为0、50、100、150 kg N·hm~(-2)·a~(-1)。于2015—2016年对不同处理的凋落物产量组分的月动态进行监测。凋落物产量组分主要分为叶、枝、果、花、皮、杂物(动物残体、芽鳞、碎屑等统称)。结果表明,施氮显著提高了天然林年均凋落物量:HN(3.69 t·hm~(-2)·a~(-1))MN(3.12 t·hm~(-2)·a~(-1))LN(3.02 t·hm~(-2)·a~(-1))CK(2.68 t·hm~(-2)·a~(-1));而人工林年均凋落物量随N添加水平呈现出先升后降的趋势:LN(3.11 t·hm~(-2)·a~(-1))CK(3.08t·hm~(-2)·a~(-1))MN(2.92 t·hm~(-2)·a~(-1))HN(2.60 t·hm~(-2)·a~(-1))。这表明过量的氮输入会降低人工林凋落物的产量。年均叶凋落量所占比重最大,达总凋落量的68.3%~75.4%,果凋落量占总凋落量的6.7%~17.8%。方差分析表明,氮添加处理对叶、果和皮凋落量具有显著影响。凋落物月动态表现为双峰型,高峰期在6月份和10月份。总之,在天然林中,凋落物产量随着施氮浓度的增加显著升高(P0.001);在人工林中,施氮处理未对凋落物产量产生显著影响(P0.05)。  相似文献   

4.
研究生态系统碳(C)、氮(N)、磷(P)密度分布和储量对于理解生态系统碳循环和养分循环的机制和规律有重要意义。现有的相关研究多集中在森林和草地生态系统。在中国北方,灌丛生境水分和土壤条件差异很大,这为研究生态系统C、N、P密度与储量的分布格局提供了良好条件。该研究调查了433个中国北方温带灌丛样地的生物量、凋落物以及土壤等组分的有机C及N、P含量,据此计算出中国北方灌丛生态系统有机C及N、P密度和储量。结果表明:中国北方灌丛平均生态系统有机C及N、P密度分别为69.8 Mg·hm~(–2)、7.3 Mg·hm~(–2)、4.2 Mg·hm~(–2)。其中,生物量C、N、P密度分别为5.1 Mg·hm~(–2)、11.5×10~(–2)Mg·hm~(–2)、8.6×10~(–3) Mg·hm~(–2),生物量C、N、P密度与降水和土壤养分关系显著;凋落物C、N、P密度分别为1.4 Mg·hm~(–2)、3.8×10~(–2)Mg·hm~(–2)、2.5×10~(–3) Mg·hm~(–2),凋落物C、N、P密度与温度和降水关系显著;1 m深土壤的平均有机C及N、P密度分别为64.0Mg·hm~(–2)、7.1 Mg·hm~(–2)、4.2 Mg·hm~(–2),土壤有机C及N密度与温度和降水关系显著。中国北方灌丛生态系统的总有机C及N、P储量分别为1.7 Pg、164.9 Tg、124.8 Tg。其中生物量C、N、P储量分别为128.4 Tg、3.1 Tg、0.2 Tg;凋落物C、N、P储量分别为8.4 Tg、0.45 Tg、0.027 Tg;土壤是最大的C、N、P库,1 m深土壤有机C及N、P储量分别为1.6 Pg、161.3 Tg、124.6 Tg。  相似文献   

5.
樟树人工林凋落物养分含量及归还量对氮沉降的响应   总被引:3,自引:0,他引:3  
赵晶  闫文德  郑威  李忠文 《生态学报》2016,36(2):350-359
氮沉降的持续增加对陆地生态系统的健康发展构成严重威胁,森林是陆地生态系统中重要的组成部分,大量的氮沉降对其结构和功能造成严重影响。凋落物是森林生态系统养分循环的重要组成部分,它对土壤肥力、森林生态系统养分循环等方面具有重要作用。为了探讨亚热带常绿阔叶森林凋落物对氮沉降增加的响应,在湖南省森林植物园以樟树人工林为研究对象进行模拟氮沉降的实验,实验设置4种氮添加水平CK(0g N m~(-2)a~(-1),对照)、LN(5g N m~(-2)a~(-1)),MN(15g N m~(-2)a~(-1)),HN(30g N m~(-2)a~(-1)),研究氮沉降对樟树林年凋落物量、凋落物养分含量以及归还量的影响。结果表明:不同施氮水平下(CK、LN、MN、HN),樟树林凋落物的年凋落量分别为(4.53±0.32)t hm~(-2)a~(-1)、(3.95±0.28)t hm~(-2)a~(-1)、(3.56±0.41)t hm~(-2)a~(-1)、(4.46±0.48)t hm~(-2)a~(-1),施氮抑制了樟树林的凋落量,且低、中氮处理下差异显著(P0.05);施氮处理后凋落物的养分含量大小顺序为:CNCaKMg,凋落物的碳含量没有显著变化,但氮含量都有所增加,因此,施氮降低了樟树凋落物各组分的C/N比;凋落物中元素的年归还量大小顺序表现为:CNCaKMg,施氮处理对凋落物C、K、Ca、Mg归还量有抑制作用,但对凋落物N归还量表现为促进作用。  相似文献   

6.
为探究氮(N)沉降和凋落物输入量改变对凋落叶分解的影响,该研究于2014年6月至2019年6月,以华西雨屏区处于N饱和状态的常绿阔叶林为研究对象,设置N添加和凋落物处理双因素实验,其中N添加处理分别为对照(CK, 0 kg·hm–2·a–1)、低N(LN,50kg·hm–2·a–1)和高N(HN,150kg·hm–2·a–1),凋落物处理分别为凋落物输入量不变(L0,不改变凋落物输入),减少(L-,减少50%)以及增加(L+,增加50%)。结果表明:6年N添加处理对该森林生态系统地上凋落物产量影响不显著; N添加处理显著抑制凋落叶分解,且N添加量越高,凋落叶分解抑制作用越强;N添加显著降低分解后期凋落叶中锰(Mn)的残留率,促进Mn的释放;凋落物输入量的增减处理未显著改变凋落叶分解速率,而凋落物增减处理升高了凋落叶中Mn的残留率,减缓Mn的释放; N添加和凋落物处理交互作用不显著。该研究表明亚热带N饱和常绿阔叶林凋落叶分解受N沉降的直接影响显著,凋落物处理...  相似文献   

7.
为探究灌丛生态系统对大气氮沉降的响应,2013年1月至2014年9月,对湖南大围山杜鹃(Rhododendron simsii)灌丛群落进行了短期模拟氮沉降试验,施氮浓度分别为0(CK)、2(LN)、5(MN)和10(HN)g·m~(–2)·a~(–1)。利用LI-8100土壤碳通量测量系统测定土壤呼吸速率,并测定不同氮处理下根系生物量增量和凋落物量。结果表明:该地区土壤呼吸呈现明显的季节动态,夏季土壤呼吸最强,冬季最弱。CK、LN、MN和HN处理样地每年通过土壤呼吸释放的CO_2量分别为2.37、2.79、2.26和2.30 kgCO_2·m~(–2)。CK、LN、MN和HN处理下,年平均土壤呼吸速率分别为1.71、2.01、1.63和1.66μmol CO_2·m~(–2)·s~(–1),LN处理样地的年均土壤呼吸速率与对照样地相比增加了17.25%,MN和HN处理则比对照样地稍低。施氮增加了根系生物量增量和凋落物量,但没有达到显著水平。土壤呼吸速率与5 cm土壤温度呈显著指数相关关系,与5 cm土壤的含水量呈显著线性相关关系。CK、LN、MN和HN处理下,土壤呼吸的温度敏感性(Q_(10))值分别为3.96、3.60、3.71和3.51,表明施氮降低了温度敏感性。氮添加导致的根系生物量增加是引起该区域土壤呼吸速率变化的一个重要原因。  相似文献   

8.
为探究不同质量凋落物对氮(N)沉降的响应,该研究采用尼龙网袋分解法,在亚热带福建三明格氏栲(Castanopsis kawakamii)自然保护区的米槠(Castanopsiscarlesii)天然林,选取4种本区常见的具有不同初始化学性质的树种凋落叶进行模拟N沉降(N添加)分解实验(施N水平为对照0和50 kg·hm~(–2)·a~(–1))。研究结果表明:在2年的分解期内,对照处理的各树种凋落叶的分解速率依次为观光木(Michelia odora, 0.557 a~(–1))、米槠(0.440 a~(–1))、台湾相思(Acacia confusa, 0.357 a~(–1))、杉木(Cunninghamia lanceolata, 0.354 a~(–1)); N添加处理凋落叶分解速率依次为观光木(0.447 a~(–1))、米槠(0.354 a~(–1))、杉木(0.291 a~(–1))、台湾相思(0.230a~(–1)),除杉木凋落叶外, N添加显著降低了其他3种凋落叶分解速率。N添加不仅使4种树木凋落叶分解过程中的N释放减慢,同时还抑制凋落叶化学组成中木质素和纤维素的降解;N添加在凋落叶分解过程中总体上提高β-葡萄糖苷酶(βG)和酸性磷酸酶活性,对纤维素水解酶的活性影响不一致,而降低β-N-乙酰氨基葡萄糖苷酶活性和酚氧化酶活性。凋落叶分解速率与凋落叶中的碳获取酶(βG)活性以及其化学组分中的可萃取物含量极显著正相关,与初始碳浓度、纤维素和木质素含量极显著负相关,与初始N含量没有显著相关性。凋落物类型和N添加的交互作用虽未影响干质量损失速率,但对木质素和纤维素的降解具有显著效应。综上所述,化学组分比初始N含量能更好地预测凋落叶分解速率,而N添加主要通过抑制分解木质素的氧化酶(如PHO)来降低凋落叶分解速率。  相似文献   

9.
基于6年模拟氮沉降试验平台研究了氮沉降对温带草原凋落物质量的影响。采集对照(0 g N·m~(-2)·a~(-1))、低氮(5 g N·m~(-2)·a~(-1))、中氮(10 g N·m-2·a-1)和高氮(15g N·m~(-2)·a~(-1))4个氮添加梯度,混合和单一两种凋落物类型,测定了凋落物纤维素、半纤维素、木质素、全碳、全氮和全磷含量。结果表明:长期模拟氮沉降降低了2种凋落物中纤维素、半纤维素、木质素含量及其与N素的比值;氮沉降对凋落物C含量无明显影响,降低了凋落物N、P含量以及C/N和C/P比值。由于氮沉降增加了凋落物N、P元素含量,同时降低了难分解的结构性物质含量,因此可能会对凋落物分解产生促进作用。  相似文献   

10.
模拟大气氮沉降对温带森林土壤微生物群落结构的影响   总被引:1,自引:0,他引:1  
本研究以温带森林土壤为研究对象,设置野外模拟氮沉降实验,分析不同施氮形态和施氮水平对微生物群落结构的影响。试验设置对照(Control,0 kg N·hm~(-2)·a~(-1))、混合态低氮(NH_4NO_3,50 kg N·hm~(-2)·a~(-1))、混合态高氮(NH_4NO_3,150 kg N·hm~(-2)·a~(-1))、铵态氮低氮((NH_4)_2SO_4,50 kg N·hm~(-2)·a~(-1))、铵态氮高氮((NH_4)_2SO_4,150 kg N·hm~(-2)·a~(-1))、硝态氮低氮(NaNO_3,50 kg N·hm~(-2)·a~(-1))、硝态氮高氮(NaNO_3,150 kg N·hm~(-2)·a~(-1))7种氮处理,持续施氮3年后,运用磷脂脂肪酸(PLFA)法对土壤微生物群落结构进行测定。结果表明:在不同水平的氮添加下,土壤微生物总量、细菌、土壤革兰阳性细菌(G+细菌)、土壤革兰阴性细菌(G-细菌)和真菌的PLFA含量均随施氮水平的增加而升高;在不同形态的氮添加下,混合态氮添加提高了微生物总量、细菌、真菌和放线菌的PLFA含量。主成分分析(PCA)表明,除铵态氮低氮添加样地外,其他氮添加处理样地中的土壤微生物结构都发生了改变。这些结果表明,模拟大气氮沉降初期,氮添加会增加温带森林土壤微生物生物量,达到一定水平后会改变土壤微生物群落结构。  相似文献   

11.
凋落物分解的快慢和养分释放的速度决定了生态系统中土壤有效养分的供应。探讨全球变化条件下森林生态系统凋落物与土壤养分的变化规律,有利于深入认识凋落物-土壤相互作用的养分调控因素,从而揭示生态系统C、N、P循环。通过模拟氮沉降增加试验,分4个水平处理,分别为0、60、120、240 kg N hm~(-2)a~(-1)。模拟氮沉降13年后,分析了杉木人工林凋落物中不同组分(落叶、落枝、落果)生态化学计量与土壤有效养分(有效氮、碱解氮、速效磷、速效钾)的关系。结果表明:氮沉降(N1、N2和N3)显著提高了落叶和落枝的N含量,平均增幅分别为35.27%和32.21%;高水平氮沉降(N3)处理显著降低了落叶和落枝的C/N,平均降幅分别为25.95%和22.32%,但N3增加了落枝和落果N/P,平均增幅分别为38.4%和31.7%;氮沉降对凋落物各组分的C、P和C/P均影响不显著。氮沉降处理显著增加了土壤NO_3~--N和NH_4~+-N含量,均表现为N3N2N1N0,其中NO_3~--N含量更容易受氮沉降处理的影响,表现为更大的增幅。N2显著增加0—20 cm土层的碱解氮含量,N1显著降低0—20 cm土层的速效钾,但氮沉降对速效磷含量没有影响。凋落物生态化学计量与土壤有效养分之间的Pearson相关和冗余分析(RDA)表明,凋落物生态化学计量与土壤有效养分之间关系紧密,凋落物P含量(蒙特卡罗检验,P=0.018)和C/P比值(P=0.037)对土壤有效养分影响显著。凋落物中C/N比值、C/P比值与土壤有效养分呈显著负相关,其比值越高越不利于土壤有效养分的累积。  相似文献   

12.
土壤动物在生态系统养分循环中扮演着重要角色,其中土壤节肢动物在凋落物破碎和土壤团聚体形成中起着决定性作用。为探究多年模拟氮沉降对苦竹人工林土壤节肢动物的影响,于2007年11月起在华西雨屏区苦竹人工林进行了每月1次的模拟氮沉降试验,以硝酸铵为氮源,设对照(0 g N·m~(-2)·a~(-1))、低氮(5 g N·m~(-2)·a~(-1))、中氮(15 g N·m~(-2)·a~(-1))和高氮(30 g N·m~(-2)·a~(-1)) 4个处理。在施氮6.5年后分别于2014年1月、10月,2015年1月采集凋落物层和0~15 cm土层样品带回实验室分离鉴定。结果显示:本试验共观察到土壤节肢动物1852只,隶属于3门7纲18目;凋落物层土壤节肢动物个体数和类群数随施氮浓度的升高而增加,且高氮处理显著高于对照;土壤层土壤节肢动物个体数和类群数随施氮浓度的升高而减少,但与对照相比均不显著;模拟氮沉降对凋落物层和土壤层土壤节肢动物多样性指数、均匀度指数和丰富度指数均无显著影响。  相似文献   

13.
模拟N沉降对森林生态系统的影响是当今全球变化生态学研究的一个热点问题,土壤碳库对N沉降比较敏感,N沉降增加了凋落叶分解过程中外源N含量,间接影响凋落叶分解的化学过程并改变凋落叶分解速率,因此,研究模拟N沉降下凋落叶分解-土壤C-N关系对预测森林C吸存有重要意义。利用原位分解袋法研究了模拟N沉降下三峡库区不同林龄马尾松林(Pinus massoniana)凋落叶分解过程中凋落叶-土壤C、N化学计量响应及其关系;N沉降水平分对照(CK,0 g m~(-2)a~(-1))、低氮(LN,5 g m~(-2)a~(-1))、中氮(MN,10 g m~(-2)a~(-1))和高氮(HN,15 g m~(-2)a~(-1))。结果表明:分解540 d后,N沉降促进20年生和30年生马尾松林凋落叶分解,46年生马尾松林中仅低氮处理促进凋落叶分解,4种处理均是30年生分解最快,说明同一树种起始N含量低的凋落叶对N沉降呈正响应,N沉降处理促进起始N含量低的凋落叶分解,起始N含量高的凋落叶分解过程中易达到"N饱和"。N沉降抑制20年生和46年生凋落叶C释放(低于对照0.62%—6.69%),促进30年生C释放(高于对照0.28%—5.55%);30年生和46年生林分N固持量均高于对照(高于对照0.15%—21.34%),20年生则低于对照(5.70%—13.87%),说明模拟N沉降处理促进起始C含量低的凋落叶C释放和起始N含量低的凋落叶N固持。N沉降处理下仅30年生马尾松林土壤有机碳较对照增加,且土壤有机质与凋落叶C、N和分解速率呈正相关,与凋落叶C/N比呈显著负相关;土壤总氮与凋落叶分解速率、凋落叶N含量呈正相关,土壤有机碳/总氮比与凋落叶C、N含量呈正相关;对照处理中凋落叶分解指标对土壤养分影响顺序是分解速率凋落物C含量凋落物C/N比凋落物N含量,低、中、高氮处理中则是凋落物C含量分解速率凋落物N含量凋落物C/N比。研究表明低土壤养分含量马尾松林对N沉降呈正响应,N沉降促进低土壤养分马尾松林凋落叶分解并提高土壤肥力;凋落叶质量和土壤养分含量低的生态系统土壤C对N沉降响应更显著。  相似文献   

14.
为理解氮沉降对华西雨屏区天然常绿阔叶林凋落物分解过程的影响,采用立地控制实验和凋落物分解袋法,研究了低氮沉降(L,50 kg N hm~(-2)a~(-1))、中氮沉降(M,150 kg N hm~(-2)a~(-1))和高氮沉降(H,300 kg N hm~(-2)a~(-1))对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响。结果表明:N沉降抑制了凋落叶的分解,并随着N沉降量的增加,抑制作用增强。N沉降遏制了凋落叶的C、N释放和纤维素降解,促进了P释放。N沉降提高了凋落叶的C/P比,中氮和高氮处理提高了凋落叶C/N比。N沉降显著增加了凋落叶N、木质素和纤维素的含量,分解1年后,各N沉降处理的木质素/N和纤维素/N均显著高于对照。N沉降提高了质量残留率与C/N、木质素/N和纤维素/N的相关性,降低了与C/P的相关性。可见,模拟N沉降显著影响了华西雨屏区天然常绿阔叶林凋落叶分解过程中的基质质量,进而影响了凋落叶的分解过程。  相似文献   

15.
通过研究氮(N)添加和升温对杉木林凋落物分解过程中碳(C)、N、磷(P)化学计量特征的影响,探索杉木林养分周转规律。利用江西千烟洲亚热带杉木(Cunninghamia lanceolata)人工林长期野外N添加(CK (0)、N1 (50 kg N·hm~(-2)·a~(-1))、N_2(100 kg N·hm~(-2)·a~(-1)))控制试验平台,采集不同年龄杉木凋落物(一年生叶和二年生叶),在不同温度(20、30℃)条件下进行凋落物分解培养试验。结果表明:凋落物分解过程中,N添加对杉木凋落物C含量没有影响; N添加显著提高了分解过程中不同年龄凋落物的N含量,降低了凋落物P含量。相同N添加水平下,凋落物N、P含量表现为一年生叶二年生叶。N添加对分解前期不同年龄凋落物的P含量表现为N2N1CK,分解后期凋落物P含量则与分解前期相反。N添加显著降低了凋落物C∶N,提高了凋落物C∶P、N∶P。在分解过程中,相同N水平下杉木凋落物C∶N、C∶P表现为二年生叶一年生叶,N∶P趋势相反。分解过程中,温度升高显著提高C∶N、C∶P。相同温度下,不同年龄凋落物的C∶N表现为一年生叶二年生叶。N∶P随温度升高而增大,不同年龄叶片的N∶P表现为一年生叶二年生叶。在杉木林经营管理中,应考虑不同年龄凋落物分解、N添加和温度作用对土壤碳氮循环的影响。  相似文献   

16.
目前对植物生物量分布格局和分配的研究多集中在森林和草地生态系统,对灌丛的相关研究较少。灌丛是中国北方广泛分布的植被。研究灌丛生物量分布格局及其分配是对估算我国陆地生态系统碳库的重要补充。该文通过对中国北方温带灌丛的大范围野外调查和采样,计算中国北方433个典型灌丛样地的生物量及其在各器官间的分配,并研究它们与气候和土壤营养等环境因子的关系。结果表明:中国北方温带灌丛平均生物量为12.5 t·hm~(–2),其中灌木层地上、地下生物量分别为4.5和5.4 t·hm~(–2),草本层地上、地下生物量分别为0.8和1.8 t·hm~(–2);凋落物量为2.5 t·hm~(–2)。不同类型中,温带落叶灌丛、亚高山落叶阔叶灌丛、荒漠灌丛平均生物量分别为14.4、28.8和5.0 t·hm~(–2)。东西部生物量分布差异较大,东部温带落叶灌丛总生物量高于西部的荒漠灌丛。东部温带落叶灌丛中,东北地区的灌丛生物量稍低于华北地区。灌木的地下-地上生物量比不随水分和土壤养分变化,而叶-枝生物量比受水分影响,在干旱区域叶-枝生物量比较低。  相似文献   

17.
模拟氮沉降下去除凋落物对太岳山油松林土壤呼吸的影响   总被引:4,自引:0,他引:4  
凋落物是土壤呼吸的重要碳源,氮沉降将改变其输入数量和质量,进而影响土壤呼吸。为揭示氮沉降和去除凋落物对土壤呼吸的影响,以太岳山油松林为研究对象,对林地分别作2种凋落物处理:去除凋落物(LR)、对照(CK1),设计4个施氮水平:不施氮(CK2,0 kg N·hm-2·a-1),低氮(LN,50 kg N·hm-2·a-1),中氮(MN,100 kg N·hm-2·a-1)和高氮(HN,150 kg N·hm-2·a-1),于2010—2012年生长季测定土壤呼吸速率的动态变化,并分析土壤呼吸速率与土壤温度、土壤湿度、土壤微生物生物量C、N的关系。结果表明:随着观测年限的推移,模拟氮沉降对对照处理的土壤呼吸速率、去凋处理的土壤呼吸速率、凋落物层呼吸速率的促进作用逐渐减弱。去除凋落物使土壤呼吸速率降低了29.0%,施氮减小了去除凋落物后土壤呼吸速率的变化幅度。土壤呼吸速率与土壤温度均呈显著指数相关(P0.05),土壤温度解释了土壤呼吸速率变异的37.3%~62.2%,去除凋落物降低了模型决定系数R2;以土壤温度和土壤水分构建的复合关系方程拟合效果均好于单因子模型,土壤温度和水分共同解释了土壤呼吸季节变化的67.6%~85.6%,并且施氮降低了去凋处理的复合模型决定系数R2,而对对照处理没有显著影响。施氮提高了土壤微生物生物量C、N,并且土壤微生物生物量C、N与土壤呼吸速率呈显著正相关(P0.05)。说明氮沉降、凋落物是影响油松林土壤CO2通量的两个重要因子。  相似文献   

18.
2010年9月-2011年10月,在山西省灵空山油松和辽东栎混交林样地采取随机区组设计,研究了地表凋落物和氮添加处理对土壤微生物生物量碳、氮和微生物活性的影响.凋落物处理包括:剔除凋落物(N)、叶凋落物加倍(L)、枝果凋落物加倍(B)和混合凋落物加倍(LB);氮添加量分别为0(N0)、5 g· m-2·a-1(N1)和10 g·m-2·a-1(N2).结果表明:剔除地表凋落物且无氮添加时,油松和辽东栎混交林地的土壤有机碳(SOC)含量显著降低,其他试验处理间对SOC的影响无显著差异.土壤微生物生物量碳(MBC)、氮(MBN)及其活性(MR)的变化范围依次为:262.42 ~ 873.16 mg·kg-1、73.55 ~ 173.85 mg·kg-1和2.38~3.68mg·kg-1·d-1.MBC、MBN和MR两两间呈极显著正相关.氮添加对MBC、MBN和MR均无显著影响;凋落物处理对MR影响显著,表现为混合凋落物加倍处理的MR最高,叶凋落物加倍处理次之,剔除凋落物处理最低,而对MBC和MBN无显著影响.凋落物和氮添加处理在整个试验过程中未表现出交互作用.短期的氮添加处理和森林地表凋落物变化对土壤微生物过程的影响有限.  相似文献   

19.
通过野外模拟试验,研究了亚热带常绿阔叶林凋落物量对氮沉降的初期响应。试验设计4种处理,分别为对照(CK)、低氮(LN,50 kg·hm-2·a-1)、高氮(HN,100kg·hm-2·a-1)和高氮加磷(HN+P,100 kg N·hm-2·a-1+50 kg P·hm-2·a-1),每个处理重复3次。通过2年的试验观测,甜槠林对照林分年总凋落物量为7.78 t·hm-2,经LN、HN、HN+P处理后,年总凋落物量分别为8.81、9.08、9.41 t·hm-2,不同处理间没有显著差异,表明氮沉降增加没有显著提高凋落物产量,但高氮处理林分,叶凋落物量表现出抑制效果,低于低氮处理;高氮+磷处理的林分凋落物总量及落叶、落枝量均明显高于高氮、低氮处理,磷添加呈现凋落物量增加的效应。甜槠林分总凋落物量表现出明显的季节动态,在春季4—5月以及秋季11月出现2个明显的峰值,不同处理趋势一致。凋落物组成中,落叶的比例占总凋落物量的53.78%~58.84%,花果杂物占28.29%~33.66%,落枝占10.79%~12.87%。研究表明,高氮处理可能引起了土壤氮素过剩,造成氮、磷失衡。  相似文献   

20.
氮添加及凋落物管理对樟子松人工林土壤理化性质的影响   总被引:2,自引:0,他引:2  
氮沉降和凋落物量的改变是全球变化影响森林生态系统的重要途径,然而二者的交互作用对土壤生态过程的影响仍知之甚少。本文研究氮添加(对照和添加10 gN·m~(-2)·a~(-1))和地表凋落物管理(对照、移除和加倍)对科尔沁沙地樟子松人工林干季(5月)和湿季(8月)土壤有效氮、基础呼吸和有效磷等的影响。结果表明:凋落物管理对土壤的影响在对照和氮添加样地中差异较大;在对照样地中,凋落物移除和加倍都显著提高了8月土壤呼吸,对有效磷和氮含量基本上无显著影响;在氮添加样地,凋落物移除与加倍均未影响土壤呼吸和有效磷含量,但显著降低有效氮含量;氮添加和凋落量变化的影响在湿季大于干季;单一的氮添加显著降低了8月的土壤有效磷含量和土壤呼吸,而凋落物量加倍减缓了氮沉降对土壤呼吸的抑制和磷限制性的加剧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号