首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The newly characterized cytokine IL-38 (IL-1F10) belongs to the IL-1 family of cytokines. Previous work has demonstrated that IL-38 inhibited Candida albicans-induced IL-17 production from peripheral blood mononuclear cells. However, it is still unclear whether IL-38 is an inflammatory or an anti-inflammatory cytokine. We generated anti-human IL-38 monoclonal antibodies in order to perform immunohistochemical staining and an enzyme-linked immunosorbent assay. While human recombinant IL-38 protein was not cleaved by recombinant caspase-1, chymase, or PR3 in vitro, overexpression of IL-38 cDNA produced a soluble form of IL-38 protein. Furthermore, immunohistochemical analysis showed that synovial tissues obtained from RA patients strongly expressed IL-38 protein. To investigate the biological role of IL-38, C57BL/6 IL-38 gene-deficient (?/?) mice were used in an autoantibody-induced rheumatoid arthritis (RA) mouse model. As compared with control mice, IL-38 (?/?) mice showed greater disease severity, accompanied by higher IL-1β and IL-6 gene expression in the joints. Therefore, IL-38 acts as an inhibitor of the pathogenesis of autoantibody-induced arthritis in mice and may have a role in the development or progression of RA in humans.  相似文献   

2.
Obesity is associated with a chronic inflammatory response. Interleukin (IL)-38 is a poorly characterized cytokine of the IL-1 family with anti-inflammatory activity. The role of IL-38 in obesity-induced inflammation and insulin resistance remains unknown. In this study, we investigated the effects of IL-38 expression by hydrodynamic-based gene delivery on high-fat diet-induced obesity in mice. Transfer of plasmid DNA encoding IL-38 reduced weight gain, liver fat content, adipose tissue weight, and obesity-induced insulin resistance compared with administration of a control plasmid. Moreover, IL-38 gene delivery inhibited the production of inflammatory mediators including IL-1β, IL-6, and monocyte chemotactic protein-1. These results suggest that IL-38 is a potential new target for the treatment of obesity.  相似文献   

3.
CD38 signaling, either induced by ligation with specific agonistic monoclonal antibody (mAb) or after interaction with CD31, its cognate counter-receptor, is involved in release of IL-1beta, IL-6, and IL-10 cytokines in resting human monocytes. CD38 ligation by the F(ab')(2) IB4 mAb did not induce signals relevant for cytokine secretion and the block of the Fcgamma receptor I (FcgammaRI) by anti-CD64 or FcgammaRII by anti-CD32 mAb did not inhibit CD38-mediated IL-1beta release. Dimerization or multimerization of the CD38 molecule by: (i) cross-linking of the receptor ligated by F(ab')(2) or by (ii) increasing CD38 expression by treating monocytes with IFNgamma were able to restore the truncated CD38-mediated signals involved in cytokine secretion. These data indicate that CD38 receptor-mediated signals operate directly suggesting a Fcgamma receptorial surface molecule independent activation pathway. The key element for the receptor mediated signaling is represented by surface density of CD38 on resting monocytes.  相似文献   

4.
Interleukin-22 (IL-22) is an IL-10 family cytokine produced by T cells and innate lymphoid cells. The IL-22 signaling pathway orchestrates mucosal immune defense and tissue regeneration through pleiotropic effects including pro-survival signaling, cell migration, dysplasia and angiogenesis. While these functions can prevent initial establishment of tumors, they can also be hijacked by aggressive cancers to enhance tumor growth and metastasis. Thus, the role of the IL-22/IL-22R1 axis in cancer is complex and context-specific. Evidence of IL-22 involvement manifests as dysregulation of IL-22 expression and signaling in patients with many common cancers including those of the gut, skin, lung and liver. Unlike other cancer-associated cytokines, IL-22 has restricted tissue specificity as its unique receptor IL-22R1 is exclusively expressed on epithelial and tissue cells, but not immune cells. This makes it an attractive target for therapy as there is potential achieve anti-tumor immunity with fewer side effects. This review summarizes current findings on functions of IL-22 in association with general mechanisms for tumorigenesis as well as specific contributions to particular cancers, and ponders how best to approach further research in the field.  相似文献   

5.
Interleukin-34 (IL-34) shares a common receptor with macrophage colony-stimulating factor (M-CSF), and can bind to CSF-1R, induces lymphocytes differentiation, proliferation, and regulates the synthesis of inflammatory components. Recent findings reported aberrant expression of IL-34 in several autoimmune disorders, such as lupus, arthritis, systemic sclerosis, inflammatory bowel diseases. The functional analysis further demonstrated that IL-34 may perform significantly in these inflammatory autoimmune disorders. IL-34 might consider as a biomarker for these diseases. I hope this collection of the findings in this review will improve knowledge of the role of IL-34, and targeting IL-34 may give the potential for these autoimmune diseases.  相似文献   

6.
Though known as a sensor of energy balance, AMP-activated protein kinase (AMPK) was recently shown to limit damage and apoptotic activity and contribute to the late preconditioning in heart. Interleukin-6 was also reported to involve in anti-apoptosis and cardio-protection in myocardium. Interestingly, both AMPK activity and IL-6 level were increased in response to ischemia, hypertrophy and oxidative stress. To determine whether AMPK activation will promote IL-6 production, cardiac fibroblasts (CFs) from mice were incubated with AMPK activator, 5-aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR). The results demonstrated that AICAR time and dose-dependently stimulated IL-6 production by ELISA and immunofluorescence. Pretreatment with p38 mitogen-activated protein kinase (MAPK) inhibitor blocked AICAR-induced IL-6 production; furthermore, AICAR-activated p38 MAPK phosphorylation by Western blot. To confirm that the increase in IL-6 production is ascribed to AMPK activation, we used another known AMPK activator, metformin. It also dose-dependently potentiated IL-6 production in CFs, and this potentiation could be reversed by p38 MAPK inhibitor. In conclusion, AMPK activation promoted IL-6 production in CFs via p38 MAPK-dependent pathway.  相似文献   

7.
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Traditionally, IL-19 was thought to be expressed in only immune cells, but studies revealed that IL-19 is also expressed in multiple atherosclerotic plaque cell types, but not normal arteries, in humans and mice. IL-19 reduces the development of atherosclerosis via multiple mechanisms, including balancing cholesterol metabolism; enhancing Th2 immune cell polarization; reducing the inflammatory response; and reducing the proliferation, migration and chemotaxis of vascular smooth muscle cells (VSMCs). Clinical and/or animal studies have primarily aimed to achieve regression and/or stabilization of atherosclerotic plaques, with regression in particular indicating a very good drug response. Most antiatherosclerotic drugs in current clinical use, including atorvastatin and alirocumab, target hyperlipidemia. Several other drugs have also been investigated in clinical trials as anti-inflammatory agents; the development of some of these agents has been terminated (canakinumab, darapladib, varespladib, losmapimod, atreleuton, setileuton, PF-04191834, veliflapon, and methotrexate), but others remain in development (ziltivekimab, tocilizumab, Somalix, IFM-2427, anakinra, mesenchymal stem cells (MSCs), colchicine, everolimus, allopurinol, and montelukast). Most of the tested drugs have shown a limited ability to reverse atherosclerosis in animal studies. Interestingly, recombinant IL-19 (rIL-19) was shown to reduce atherosclerosis development in a time- and dose-dependent manner. A low dose of rIL-19 (1 ng/g/day) reduced aortic arch and root plaque areas by 70.1% and 32.1%, respectively, in LDLR-/- mice. At 10 ng/g/day, rIL-19 completely eliminated atherosclerotic plaques. There were no sex differences in the effects of rIL-19 on atherosclerotic mice. Thus, low-dose rIL-19 is an effective antiatherosclerotic agent, in addition to its efficacy in intimal hyperplasia, spinal cord injury, stroke, and multiple sclerosis. We propose that IL-19 is a promising biomarker and target for the diagnosis and treatment of atherosclerosis. This review considers the role and mechanism of action of IL-19 in atherosclerosis and discusses whether IL-19 is a potential therapeutic target for this condition.  相似文献   

8.
9.
IL-17RA is a shared receptor subunit for several cytokines of the IL-17 family, including IL-17A, IL-17C, IL-17E (also called IL-25) and IL-17F. It has been shown that mice deficient in IL-17RA are more susceptible to sepsis than wild-type mice, suggesting that IL-17RA is important for host defense against sepsis. However, it is unclear which ligands for IL-17RA, such as IL-17A, IL-17C, IL-17E/IL-25 and/or IL-17F, are involved in the pathogenesis of sepsis. Therefore, we examined IL-17A, IL-17E/IL-25 and IL-17F for possible involvement in LPS-induced endotoxin shock. IL-17A-deficient mice, but not IL-25- or IL-17F-deficient mice, were resistant to LPS-induced endotoxin shock, as compared with wild-type mice. Nevertheless, studies using IL-6-deficient, IL-21Rα-deficient and Rag-2-deficient mice, revealed that neither IL-6 and IL-21, both of which are important for Th17 cell differentiation, nor Th17 cells were essential for the development of LPS-induced endotoxin shock, suggesting that IL-17A-producing cells other than Th17 cells were important in the setting. In this connection, IL-17A was produced by macrophages, DCs and eosinophils after LPS injection. Taken together, these findings indicate that IL-17A, but not IL-17F or IL-25, is crucial for LPS-induced endotoxin shock. In addition, macrophages, DCs and eosinophils, but not Th17 cells or γδ T cells, may be sources of IL-17A during LPS-induced endotoxin shock.  相似文献   

10.
Studies in recent years have identified a pivotal role of the cytokine IL-23 in the pathogenesis of inflammatory bowel diseases (IBD: Crohn´s disease, ulcerative colitis) and colitis-associated colon cancer. Genetic studies revealed that subgroups of IBD patients have single nucleotide polymorphisms in the IL-23R gene suggesting that IL-23R signaling affects disease susceptibility. Furthermore, increased production of IL-23 by macrophages, dendritic cells or granulocytes has been observed in various mouse models of colitis, colitis-associated cancer and IBD patients. Moreover, in several murine models of colitis, suppression of IL-12/IL-23 p40, IL-23 p19 or IL-23R function led to marked suppression of gut inflammation. This finding was associated with reduced activation of IL-23 target cells such as T helper 17 cells, innate lymphoid cells type 3, granulocytes and natural killer cells as well as with impaired production of proinflammatory cytokines. Based on these findings, targeting of IL-23 emerges as important concept for suppression of gut inflammation and inflammation-associated cancer growth. Consistently, neutralizing antibodies against IL-12/IL-23 p40 and IL-23 p19 have been successfully used in clinical trials for therapy of Crohn´s disease and pilot studies in ulcerative colitis are ongoing. These findings underline the crucial regulatory role of IL-23 in chronic intestinal inflammation and colitis-associated cancer and indicate that therapeutic strategies aiming at IL-23 blockade may be of key relevance for future therapy of IBD patients.  相似文献   

11.
白介素-33(IL-33)是近年来新发现的IL-1家族的新成员,通过结合其受体ST2诱导Th2型细胞因子的产生。IL-33既可以调节Th2型免疫反应、刺激肥大细胞产生前炎性因子,又可以作为核因子调控基因转录。IL-33在血管性疾病、变态反应性疾病、自身免疫性疾病和炎症性疾病中均发挥重要作用。对IL-33功能及机制的研究将有助于进一步了解这些疾病的致病机制,为疾病治疗提供新的策略。  相似文献   

12.
Youngkyun Lee 《BMB reports》2013,46(10):479-483
The balance between osteoblast-dependent bone formation and osteoclast-dependent bone resorption maintains bone homeostasis. In inflammatory conditions, this balance shifts toward bone resorption, causing osteolytic bone lesions observed in rheumatoid arthritis and periodontitis. A recently discovered family of cytokine IL-17 is widely reported to mediate diverse inflammatory processes. During the last decade, novel roles for IL-17 in skeletal homeostasis have been discovered indicating the potential importance of this cytokine in bone metabolism. This review will summarize and discuss the involvement of IL-17 during bone homeostasis in both physiologic and pathologic conditions. A better understanding of the role of IL-17 in skeletal systems warrants an advance in bone biology, as well as development of therapeutic strategies against bone-lytic diseases, such as rheumatoid arthritis and periodontitis. [BMB Reports 2013; 46(10): 479-483]  相似文献   

13.
The aim of the present study was to investigate the potential role of the recently discovered IL-1 family member IL-33 in bone remodeling. Our results indicate that IL-33 mRNA is expressed in osteocytes in non-inflammatory human bone. Moreover, IL-33 levels are increased by TNF-α and IL-1β in human bone marrow stromal cells, osteoblasts and adipocytes obtained from three healthy donors. Experiments with the inhibitor GW-9662 suggested that expression of IL-33, in contrast to that of IL-1β, is not repressed by PPARγ likely explaining why IL-33, but not IL-1β, is expressed in adipocytes. The IL-33 receptor ST2L is not constitutively expressed in human bone marrow stromal cells, osteoblasts or CD14-positive monocytes, and IL-33 has no effect on these cells. In addition, although ST2L mRNA is induced by TNF-α and IL-1β in bone marrow stromal cells, IL-33 has the same effects as TNF-α and IL-1β, and, therefore, the biological activity of IL-33 may be redundant in this system. In agreement with this hypothesis, MC3T3-E1 osteoblast-like cells constitutively express ST2L mRNA, and IL-33 and TNF-α/IL-1β similarly decrease osteocalcin RNA levels in these cells. In conclusion, our results suggest that IL-33 has no direct effects on normal bone remodeling.  相似文献   

14.
《Cell reports》2023,42(5):112471
  1. Download : Download high-res image (209KB)
  2. Download : Download full-size image
  相似文献   

15.
NLRP3炎症体与炎症性疾病   总被引:1,自引:0,他引:1  
炎症体是胱天蛋白酶的活化平台,并促进一些前炎症细胞因子如IL-1β、IL-18和IL-33的成熟,启动机体的先天性免疫防御功能。炎症体的激活和失调与人类先天及后天的炎症性疾病都密切相关。通过对NLRP1、NL-RP3、IPAF和AIM2炎症体调节机制的研究,可为家族性周期性自身炎症反应、痛风、II型糖尿病等的治疗提供新的靶点。主要就NLRP3炎症体的组成、分布和调节机制及与NLRP3炎症体相关的炎症性疾病进行了简要介绍。  相似文献   

16.
In order to study the relationship between insulin like growth factor-II (IGF-II) and interleukin-8 (IL-8) that are upregulated in psoriasis, we monitored IL-8 expression in IGF-II-treated human keratinocytes and explored the signaling pathways of IL-8 expression by IGF-II. IGF-II increased the IL-8 mRNA and protein levels in human keratinocytes. The upregulation of IL-8 expression by IGF-II was reduced by pretreatment with inhibitors of tyrosine kinase, Src, PI3-kinase, and ERK, but not by p38. Furthermore, IGF-II remarkably increased the DNA binding activities of NF-kappaB and AP-1, and the IL-8 promoter activity. However, cotransfection with IkappaB mutant blocked the IGF-II-induced IL-8 promoter activity. In addition, cotransfection with dominant negative MEK1 mutant, but not with dominant negative p38 mutant, blocked the IGF-II-induced IL-8 promoter activity. These results suggest that IGF-II is involved in the pathogenesis of psoriasis by inducing IL-8 gene expression through the tyrosine kinase-Src-ERK1/2-AP-1 pathway, and the PI3-kinase and NF-kappaB pathway.  相似文献   

17.
In the recent past, there has been a burgeoning interest in targeting cytokines such as IL-3 for specific disease conditions of bone such as rheumatoid arthritis and multiple myeloma. Unlike other cytokines, IL-3 is a cytokine with a multilineage potential and broad spectrum of target cells and it plays a vital role in hematopoiesis. Due to its common receptor subunit, the action of IL-3 shows functional redundancy with other cytokines such as the granulocyte-macrophage colony-stimulating factor and IL-5. IL-3 has been successfully used in ameliorating radiation-induced bone marrow aplasia and similar conditions. However, the role of IL-3 in bone cells has not been fully unraveled yet; therefore, the aim of this overview is to present the effects of IL-3 in bone with a special emphasis on osteoclasts and osteoblasts in a concise manner.  相似文献   

18.
目的:探讨IL-23/IL-17轴在脓毒症患者中的表达及意义.方法:符合诊断标准的脓毒症患者40例,以28天预后为终点,将患者分为存活组(n=21)和病死组(n=19),分析各组病人的急性生理和慢性健康评分(APACHE)Ⅱ和序贯器官衰竭估计(SOFA)评分,同时在入ICU第1天采取外周静脉血做IL-23和IL-17检测,并对病死率和IL-23、IL-17、APACHEⅡ、SOFA做相关性分析.结果:与存活组比较,病死组患者拥有较高的APACHEⅡ和SOFA评分(P<0.01),且外周血的IL-23和IL-17蛋白含量均明显升高(P<0.05).APACHEⅡ和SOFA评分、IL-17和IL-23含量与28天预后有明显的相关性(P<0.05).结论:脓毒症Th17细胞分泌的IL-23/IL-17增加,加重患者病情,在脓毒症发病机制中可能扮演重要角色.  相似文献   

19.
Shock waves were elicited by transient pressure disturbances, which could be used to treat musculoskeletal disorders. In present studies, we investigated whether the low-density shock waves (LDSWs), which are able to damage plasma membrane without impairing the vimentin or other organelles, might augment T-  相似文献   

20.
The intestine serves as an important digestive and the largest immune organ in the body. Interleukin-6(IL-6), an important mediator of various pathways, participates in the interactions between different kinds of cells and closely correlates with intestinal physiological and pathological condition. In this review we summarize the signaling pathways of IL-6 and its functions in maintaining intestinal homeostasis. We also explored its relation with nervous system and highlight its potential role in Parkinson''s disease. Based on its specialty of the double-side influences on intestinal tumors and inflammation, we summarize how they are done through distinctive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号