首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Many scientists, confined to home office by COVID‐19, have been gathering in online communities, which could become viable alternatives to physical meetings and conferences. Subject Categories: S&S: Careers & Training, Methods & Resources, S&S: Ethics

As COVID‐19 has brought work and travel to a grinding halt, scientists explored new ways to connect with each other. For the gene regulation community, this started with a Tweet that quickly expanded into the “Fragile Nucleosome” online forum, a popular seminar series, and many intimate discussions connecting scientists all over the world. More than 2,500 people from over 45 countries have attended our seminars so far and our forum currently has ~ 1,000 members who have kick‐started discussion groups and mentorship opportunities. Here we discuss our experience with setting up the Fragile Nucleosome seminars and online discussion forum, and present the tools to enable others to do the same.Too often, we forget the importance of social interactions in science. Indeed, many creative ideas originated from impromptu and fortuitous encounters with peers, in passing, over lunch, or during a conference coffee break. Now, the ongoing COVID‐19 crisis means prolonged isolation, odd working hours, and less social interactions for most scientists confined to home. This motivated us to create the “Fragile Nucleosome” virtual community for our colleagues in the chromatin and gene regulation field.
… the ongoing COVID‐19 crisis means prolonged isolation, odd working hours and less social interactions for most scientists confined to home.
While the need to address the void created by the COVID‐19 pandemic triggered our actions, a large part of the international community already has had limited access to research networks in our field. Our initiative offered new opportunities though, in particular for those who have not benefited from extensive networks, showing how virtual communities can address disparities in accessibility. This should not be a stop‐gap measure during the pandemic: Once we come out from our isolation, we still need to address the drawbacks of in‐person scientific conferences/seminars, such as economic disparities, travel inaccessibility, and overlapping family responsibilities (Sarabipour, 2020). Our virtual community offers some solutions to the standing challenges (Levine & Rathmell, 2020), and we hope our commentary can help start conversations about the advantages of virtual communities in a post‐pandemic world.
… once we come out from our isolation we still need to address the drawbacks of in‐person scientific conferences/seminars, such as economic disparities, travel inaccessibility and overlapping family responsibilities…
  相似文献   

2.
The ongoing lockdowns provide ideal conditions to study the relationship between wildlife and humans but among humans themselves. Subject Categories: Ecology, S&S: History & Philosophy of Science

Almost all research has been affected in some way or another by the COVID‐19 pandemic, at the very least by challenging collaboration and interaction. But some areas have been affected more than others. Ecology and conservation biology experience a real boon as ongoing lockdowns have presented unique opportunities to study the impact of human activities on animals and ecosystems. This has not just galvanised research but also promises to leave a legacy of networks and collaborations to explore means to reduce negative human impacts on biodiversity long after the pandemic has subsided. In the social sciences and humanities, however, the pandemic is raising fundamental questions about their ability to contribute meaningfully to inform policy and public health responses.
In the social sciences and humanities […] the pandemic is raising fundamental questions about their ability to contribute meaningfully to inform policy and public health responses.
  相似文献   

3.
While the COVID‐19 pandemic has reduced the incidence of respiratory infectious diseases, its economic repercussions have badly hit the fight against HIV and tuberculosis. Subject Categories: Economics, Law & Politics, Microbiology, Virology & Host Pathogen Interaction, Science Policy & Publishing

As restrictions and lockdowns are being relaxed in many countries, the impact of the COVID‐19 pandemic on other diseases is gaining attention. While the overall picture is diverse, it is clear that the incidence of other respiratory diseases, including seasonal influenza and common colds, has declined greatly, especially in temperate climates. On the other hand, the ongoing fight against major tropical diseases has been severely impaired as a result of attention being diverted towards COVID‐19 with grave concerns over a surge in TB cases and a delayed impact on HIV due to reduced testing.  相似文献   

4.
Ethical challenges should be addressed before gene editing is made available to improve the immune response against emerging viruses. Subject Categories: S&S: Economics & Business, Genetics, Gene Therapy & Genetic Disease, Immunology

In 1881, Louis Pasteur proved the “germ theory of disease”, namely that microorganisms are responsible for causing a range of diseases. Following Pasteur’s and Robert Koch’s groundbreaking work on pathogens, further research during the 20th century elucidated how the immune system fends off disease‐causing microorganisms from a molecular perspective.The COVID‐19 pandemic has again focused scientific and public attention on immunology not the least owing to the race of employing vaccines to halt the spread of the virus. Although most countries have now started vaccination programs to immunize a large part of the world''s population, the process will take time, vaccines may not be available to everyone, and a number of unresolved issues remain including the potential contagiousness of vaccinated individuals and the duration of protection (Polack et al, 2020).It would therefore be extremely helpful from a public health perspective—and indeed lifesaving for those with elevated risk of developing severe course of the disease—if we could boost the human immune system by other means to better fight off SARS‐CoV‐2 and possibly other viruses. Recent studies showing that some individuals may be less susceptible to contract severe COVID‐19 depending on their genetic status support such visions (COVID‐19 Host Genetics Initiative, 2020). This could eventually inspire research projects on gene therapy with the aim of generally enhancing immunity against viral infections.
It would therefore be extremely helpful from a public health perspective […] if we could boost the human immune system by other means to better fight off SARS‐CoV‐2 …
The idea of genetically enhancing the human immune response is not new and spread from academic circles to policymakers and the general public even before the pandemic, when He Jiankui announced in November 2018 the birth of genetically edited twins who, he claimed, were resistant to HIV. The public outcry was massive, not only because He violated standards of methodological rigor and research ethics, but also because of fundamental doubts about the wisdom and legitimacy of human germline manipulation (Schleidgen et al, 2020).Somatic gene therapy has been met with a less categorical rejection, but it has also been confronted with skepticism when major setbacks or untoward events occurred, such as the death of Jesse Gelsinger during an early clinical trial for gene therapy in 1999. Nonetheless, given the drastic impact the current pandemic has on so many lives, there may be a motivation to put concerns aside. In fact, even if we managed to get rid of COVID‐19 owing to vaccines—or at least to keep its infectiousness and mortality low—another virus will appear sooner or later; an improved resistance to viral pathogens—including coronaviruses—would be an important asset.Interventions to boost the immune system could in fact make use of either germline gene editing, as has been the case of the Chinese twins, or through somatic gene editing. The first requires time and only the next generation would potentially benefit while the latter could be immediately applied and theoretically used to deal with the ongoing COVID‐19 pandemic.
Interventions to boost the immune system could in fact make use of either germline gene editing, as has been the case of the Chinese twins, or through somatic gene editing.
  相似文献   

5.
Non‐technical summaries of research projects allow tracking the numbers and purpose of animal experiments related to SARS‐CoV2 research so as to provide greater transparency on animal use. Subject Categories: Economics, Law & Politics, Pharmacology & Drug Discovery, Science Policy & Publishing

The COVID‐19 pandemic has accelerated biomedical research and drug development to an unprecedented pace. Governments worldwide released emergency funding for biomedical research that allowed scientists to focus on COVID‐19 and related drug and vaccine development. As a result, a flood of scientific articles on SARS‐CoV‐2 and COVID‐19 was published since early 2020. More importantly though, within less than 2 years, scientists in academia and industry developed vaccines against the virus from scratch: Several vaccines have now received regulatory approval and are being mass produced to immunize the human population worldwide.This colossal success of science rests in large part on the shoulders of animals that were used in basic and pre‐clinical research and regulatory testing. Notwithstanding, animal experimentation has remained a highly controversial and heated topic between advocates for research and animal rights activists. During the past decades, European policymakers responded to the debate by enacting stricter regulations, which inevitably has increased the bureaucratic hurdles for experimentation on animals. Scientists have for long spoken out against this additional burden, arguing that both basic and translational researches to improve human health crucially relies on animal experimentation—as the COVID‐19 pandemic aptly demonstrated (Genzel et al, 2020).  相似文献   

6.
Governments’ measures to control the COVID‐19 pandemic and public reaction hold important lessons for science and risk communication in times of crisis.

The world is in the grips of a global pandemic, the end of which is not yet in sight. Nations struggle to deal with the severe health, economic and social impacts of COVID‐19 with varying success. Their ability to handle this crisis depends on many factors, some of which, such as the availability of vaccines, are variable, while others – geographical location or population density – are determined. More importantly though, public health infrastructures, political will and action, and clear communication have so far proved to be the most successful levers for coping with the pandemic. This article examines how political will and communication in particular have helped to alleviate the impact of the virus in some countries.
… public health infrastructures, political will and action, and clear communication have so far proved to be the most successful levers for coping with the pandemic.
News that a new virus had emerged in Wuhan, China, was just of fleeting interest for most people in December 2019. This changed rapidly: by March 2020, large parts of the world had gone into lockdown to curtail the rapid spread of SARS‐CoV‐2. Many governments issued more or less harsh restrictions on private contacts, travel and other freedoms, followed by easing these regulations during the summer, which precipitated new outbreaks in the fall along with mutations of the virus that triggered new restrictions; it is likely that this pattern will continue until a sufficient number of people are vaccinated to achieve herd immunity.COVID‐19 came “out of the blue”, hit a largely unprepared human population and has therefore affected human civilisation in an unprecedented manner (Fig 1). People are not only concerned about their health: as the pandemic continues, citizens also worry about the social, economic and psychological impacts. Even though vaccination programmes are under way, only a few countries will be able to achieve herd immunity by the summer; in the meantime, public acceptance for the ongoing restrictions of freedom are waning as the negative social and economic effects become more urgent. Thus, political action and planning along with efficient communication in particular are crucially important to ensure the public’s understanding of the situation and maintain acceptance for restrictive measure until enough vaccines become available. The antipodes in communication strategies were a mixture of evidence‐based messages, transparency, building confidence and open discussion of scientific uncertainty to gain and maintain public trust versus the unfettered spread of alternative facts, targeted disinformation and omission of important information that eventually eroded said trust.Open in a separate windowFigure 1Fear in times of COVID‐19An elderly pedestrian wearing a face mask due to the COVID‐19 pandemic, walks past graffiti depicting the subjects within famous artworks, in Glasgow on 2 September 2020 after the Scottish government imposed fresh restrictions on the city after a rise in cases of the novel coronavirus (© Andy Buchanan/AFP via Getty Images)
… political action and planning along with efficient communication in particular are crucially important to ensure the public’s understanding of the situation and maintain acceptance for restrictive measure…
  相似文献   

7.
The COVID‐19 pandemic has triggered a new bout of anti‐vaccination propaganda. These are often grounded in pseudoscience and misinterpretation of evolutionary biology. Subject Categories: Economics, Law & Politics, Microbiology, Virology & Host Pathogen Interaction, Science Policy & Publishing

Towards the end of summer of 2021, there seemed cause for cautious optimism for putting this pandemic behind us. It was clear that the route of viral transmission was airborne and not via surfaces (Goldman, 2021a), which means that masks are very efficient at reducing the spread of SARS‐CoV‐2. The number of cases in the United States and Europe were declining, and the first vaccines became available with many people lining up to get their jabs. But not all. A significant portion of the population have been refusing to get vaccinated, some of whom were fooled or encouraged by pseudoscientific misinformation propagated on the Internet.  相似文献   

8.
Since COVID‐19 hit last year, lecturers and professors have been exploring digital and other tools to teach and instruct their students. Subject Categories: S&S: Careers & Training, Methods & Resources

As Director of the Digital Pedagogy Lab at the University of Colorado in Denver, USA, Michael Sean Morris’ work took on new significance as the COVID19 pandemic hit campuses around the world. “What happened with the pandemic was a lot of people who weren''t accustomed to teaching online, or dealing with distance learning, or remote learning in any way, shape, or form, really tried to create a live classroom situation on their screen, mostly using Zoom or other similar technologies”, Morris said. “With technology now, we can do things which make us feel closer. So, we can do a Zoom; there can be synchronous chat in technologies like Slack, or discussion forums or what‐have‐you to make you feel like you''re closer, to make you feel like you''re sort of together at the same time. But the majority of online learning actually has been asynchronous, it''s been everyone coming in when they can and doing their work when they can”.Educators have been divided over the use of online learning. But this changed when a deadly pandemic forced everyone from kindergarten to university into digital spaces. Luckily, many digital tools, such as Zoom, Slack, Blackboard Collaborate, or WhatsApp, were available to enable the migration. Nonetheless, teachers, lecturers, and professors struggle to educate their students with knowledge and the hands‐on training that is paramount for teaching biology.
… teachers, lecturers and professors struggle to educate their students with knowledge and the hands‐on training that is paramount for teaching biology.
  相似文献   

9.
10.
11.
The COVID‐19 pandemic has rekindled debates about gain‐of‐function experiments. This is an opportunity to clearly define safety risks and appropriate countermeasures. Subject Categories: Economics, Law & Politics, Microbiology, Virology & Host Pathogen Interaction, Science Policy & Publishing

The so‐called “gain of function” research has been recently debated in the context of viral research on coronaviruses and whether it is too risky to undertake such experiments. However, the meaning of “gain of function” or “GOF” in a science policy context has changed over time. The term was originally coined to describe two controversial research projects on H5N1 avian influenza virus and was later applied to specific experiments on coronavirus. Subsequent policies and discussions have attempted to define GOF in different ways, but no single definition has been widely accepted by the community. The fuzzy and imprecise nature of the term has led to misunderstandings and has hampered discussions on how to properly assess the benefit of such experiments and biosafety measures.
The fuzzy and imprecise nature of the term GOF has led to misunderstandings and has hampered discussions on how to properly assess the benefit of such experiments and biosafety measures
  相似文献   

12.
SARS‐CoV‐2 infection hijacks signaling pathways and induces protein–protein interactions between human and viral proteins. Human genetic variation may impact SARS‐CoV‐2 infection and COVID‐19 pathology; however, the genetic variation in these signaling networks remains uncharacterized. Here, we studied human missense single nucleotide variants (SNVs) altering phosphorylation sites modulated by SARS‐CoV‐2 infection, using machine learning to identify amino acid substitutions altering kinase‐bound sequence motifs. We found 2,033 infrequent phosphorylation‐associated SNVs (pSNVs) that are enriched in sequence motif alterations, potentially reflecting the evolution of signaling networks regulating host defenses. Proteins with pSNVs are involved in viral life cycle and host responses, including RNA splicing, interferon response (TRIM28), and glucose homeostasis (TBC1D4) with potential associations with COVID‐19 comorbidities. pSNVs disrupt CDK and MAPK substrate motifs and replace these with motifs of Tank Binding Kinase 1 (TBK1) involved in innate immune responses, indicating consistent rewiring of signaling networks. Several pSNVs associate with severe COVID‐19 and hospitalization (STARD13, ARFGEF2). Our analysis highlights potential genetic factors contributing to inter‐individual variation of SARS‐CoV‐2 infection and COVID‐19 and suggests leads for mechanistic and translational studies.Subject Categories: Computational Biology, Microbiology, Virology & Host Pathogen Interaction, Post-translational Modifications & Proteolysis

An integrative proteogenomic study reveals that human phospho‐signaling networks responding to SARS‐CoV‐2 infection are enriched in genetic variants that modify kinase binding motifs, suggesting that genetic variation may impact infection and COVID‐19 pathology.  相似文献   

13.
The COVID‐19 crisis has forced researchers in Ecology to change the way we work almost overnight. Nonetheless, the pandemic has provided us with several novel components for a new way of conducting science. In this perspective piece, we summarize eight central insights that are helping us, as early career researchers, navigate the uncertainties, fears, and challenges of advancing science during the COVID‐19 pandemic. We highlight how innovative, collaborative, and often Open Science‐driven developments that have arisen from this crisis can form a blueprint for a community reinvention in academia. Our insights include personal approaches to managing our new reality, maintaining capacity to focus and resilience in our projects, and a variety of tools that facilitate remote collaboration. We also highlight how, at a community level, we can take advantage of online communication platforms for gaining accessibility to conferences and meetings, and for maintaining research networks and community engagement while promoting a more diverse and inclusive community. Overall, we are confident that these practices can support a more inclusive and kinder scientific culture for the longer term.  相似文献   

14.
Debates about the source of antibodies and their use are confusing two different issues. A ban on life immunization would have no repercussions on the quality of antibodies. Subject Categories: S&S: Economics & Business, Methods & Resources, Chemical Biology

There is an ongoing debate on how antibodies are being generated, produced and used (Gray, 2020; Marx, 2020). Or rather, there are two debates, which are not necessarily related to each other. The first one concerns the quality of antibodies used in scientific research and the repercussions for the validity of results (Bradbury & Pluckthun, 2015). The second debate is about the use of animals to generate and produce antibodies. Although these are two different issues, we observe that the debates have become entangled with arguments for one topic incorrectly being used to motivate the other and vice versa. This is not helpful, and we should disentangle the knot.Polyclonal antibodies are being criticized because they suffer from cross‐reactivity, high background and batch‐to‐batch variation (Bradbury & Pluckthun, 2015). Monoclonal antibodies produced from hybridomas are criticized because they often lack specificity owing to genetic heterogeneity introduced during hybridoma generation that impairs the quality of the monoclonals (Bradbury et al, 2018). These are valid criticisms and producing antibodies in a recombinant manner will, indeed, help to improve quality and specificity. But a mediocre antibody will remain a mediocre antibody, no matter how it is produced. Recombinant methods will just produce a mediocre antibody more consistently.Getting a good antibody is not easy and much depends on the nature and complexity of the antigen. And low‐quality antibodies are often the result of poor screening, poor quality control, incomplete characterization and the lack of international standards. Nevertheless, the technologies to ensure good selection and to guarantee consistent quality are much more advanced than a decade ago, and scientists and antibody producers should implement these to deliver high‐quality antibodies. Whether antibodies are generated by animal immunization or from naïve or synthetic antibody libraries is less relevant; they can all be produced recombinantly, and screening and characterization are needed in all cases to determine quality, and if the antibody is fit for purpose.But criticisms on the quality of many antibodies and pleas for switching to recombinant production of antibodies cannot be mixed up with a call to ban animal immunization. The EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) recently published a recommendation to stop using animals for generating and producing antibodies for scientific, diagnostic and even therapeutic applications (EURL ECVAM, 2020). This recommendation is mainly supported by scientists who seem to be biased towards synthetic antibody technology for various reasons. Their main argument is that antibodies derived from naïve or synthetic libraries are a valid (and exclusive) alternative. But are they?One can certainly select antibodies from non‐immune libraries, and, depending on the antigen and the type of application, these antibodies can be fit for purpose. In fact, a few of such antibodies have made it to the market as therapeutics, Adalimumab (Humira®) being a well‐known example. But up to now, the vast majority of antibodies continues to come from animal immunization (Lu et al, 2020). And there is a good reason for that. It is generally possible to generate a few positive hits in a naïve/synthetic library; and the more diverse the library, the more hits one is likely to get. But many decades of experience with immunization of animals—especially when they are outbred—shows that they generate larger amounts of antibodies with superior properties. And the more complex your antigen is, the more the balance swings towards animal immunization if you want to have a guarantee for success.There are different factors at work here. First, the immune system of mammals has evolved over millions of years to efficiently produce excellent antibodies against a very diverse range of antigens. Second, presenting the antigen multiple times in its desired (native) conformation to the animal immune system exploits the natural maturation process to fine‐tune the immune response against particular qualities. Another factor is that in vivo maturation seems to select against negative properties such as self‐recognition and aggregation. It also helps to select for important properties that go beyond mere molecular recognition (Jain et al, 2017). In industrial parlance, antibodies from animal immunization are more “developable” and have favourable biophysical properties (Lonberg, 2005). Indeed, the failure rate for antibodies selected from naïve or synthetic libraries is significantly higher.Of course, the properties of synthetic antibodies selected from non‐immune libraries can be further matured in vitro, for example by light chain shuffling or targeted mutagenesis of the complementarity determining region (CDR). While this method has become more sophisticated over the years, it remains a very complex and iterative process without guarantee that it produces a high‐quality antibody.Antibodies are an ever more important tool in scientific research and a growing area in human and veterinary therapeutics. Major therapeutic breakthroughs in immunology and oncology in the past decades are based on antibodies (Lu et al, 2020). The vast majority of these therapeutic antibodies were derived from animals. An identical picture appears when you look at the antibodies in fast‐track development to combat the current COVID‐19 crisis: again, the vast majority are either derived from patients or from animal immunizations. The same holds true for antibodies that are used in diagnostics and epidemiologic studies for COVID‐19.It is for that reason that we need the tools and methods that guarantee antibodies of the highest quality and provide the best chance for success. The COVID‐19 pandemic is only one illustration of this need. If we block access to these tools, both scientific research and society at large will be negatively impacted. We therefore should not limit ourselves to naïve and synthetic libraries. Animal immunization remains an inevitable method that needs to stay. But we all agree that these immunizations must be performed under best practice to further reduce the harm to animals.  相似文献   

15.
16.
Bioinspiration is a promising lens for biology instruction as it allows the instructor to focus on current issues, such as the COVID‐19 pandemic. From social distancing to oxygen stress, organisms have been tackling pandemic‐related problems for millions of years. What can we learn from such diverse adaptations in our own applications? This review uses a seminar course on the COVID‐19 crisis to illustrate bioinspiration as an approach to teaching biology content. At the start of the class, students mind‐mapped the entire problem; this range of subproblems was used to structure the biology content throughout the entire class. Students came to individual classes with a brainstormed list of biological systems that could serve as inspiration for a particular problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). After exploration of relevant biology content, discussion returned to the focal problem. Students dug deeper into the literature in a group project on mask design and biological systems relevant to filtration and transparency. This class structure was an engaging way for students to learn principles from ecology, evolution, behavior, and physiology. Challenges with this course design revolved around the interdisciplinary and creative nature of the structure; for instance, the knowledge of the participants was often stretched by engineering details. While the present class was focused on the COVID‐19 crisis, a course structured through a bioinspired approach can be applied to other focal problems, or subject areas, giving instructors a powerful method to deliver interdisciplinary content in an integrated and inquiry‐driven way.  相似文献   

17.
New biotechnologies such as gene drives and engineered viruses herald a viral era that would give humans exceptional power over any organism at the level of the genotype. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business, Ecology

We are entering a new phase in our relationship with nature: after mechanization, automation and digitalization, a new era of autonomous technical objects is dawning. The most advanced of these technologies are characterized by viral behaviour. The COVID‐19 pandemic has again aptly demonstrated the power of viral systems: not only because of the SARS‐CoV‐2 virus'' ability to jump into and rapidly spread among the human population while wreaking havoc with human societies, but also because some of the vaccines developed against the virus are themselves based on viruses. Both developments give us some ideas of the possible impact of new biotechnologies that aim to create artefacts with viral behaviour in order to shape and control our natural environment. In this essay, the focus is on the use of genetically engineered organisms and the genetic manipulation of wild species. This change has a more direct relationship to our natural environment than autonomous software artefacts such as computer apps or digital viruses that “live” in their artificial “ecosystems” of information‐processing devices. The development of artificial biological systems will therefore require new methods for monitoring and intervention given their potential to autonomously spread within natural ecosystems.  相似文献   

18.
19.
The COVID‐19 pandemic has heavily impacted academics’ professional and personal lives, forcing many research groups (labs) to shift from an academic system primarily based on in‐person work to an almost full‐time remote workforce during lockdowns. Labs are generally characterized by a strong lab culture that underpins all research and social activities of its members. Lab culture traditionally builds on the pillars of in‐person communication, knowledge sharing, and all social and professional activities that promote collaboration, team building, scientific productivity, and well‐being. Here, we use the experience of our research group facing the COVID‐19 pandemic to illustrate how proactively reinforcing lab culture and its positive outcomes have been essential to our lab when transitioning from an in‐person to a remote lab environment, and through its ongoing evolution toward a hybrid remote/in‐person model. We argue that the proactive promotion of lab culture in research groups can foster academic resilience during crises, helping research groups to maintain their capacity to conduct scientific activities while preserving a sustainable life/work balance and a healthy mental condition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号