首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the more unusual visual systems of the Actinopterygii is that of Pantodon buchholzi (Osteoglossomorpha: Osteoglossidae). Its adaptations associate neuroanatomy at different levels of the visual system with ecological and behavioural correlates and demonstrate that the visual system of this fish has adapted for simultaneous vision in air and water. The visual field is divided into three distinct areas: for viewing into the water column, into air, and for viewing the aquatic reflection from the underside of the water surface. Cone diameters in different retinal areas correlate with the differing physical constraints in the respective visual field. Retinal differentiation between the aquatic and aerial views is paralleled at different levels of the central nervous system. A diencephalic nucleus receives both direct and indirect (tectal) afferent input from only the aerial visual system and a specific type of cell in the optic tectum is preferentially distributed in the tectum processing aerial inputs. Distinctions within a single sensory system suggest that some behaviours may be organized according to visual field. For Pantodon, feeding is initiated by stimuli seen by the ventral hemiretina so the anatomical specializations may well play an important role as elements in a feeding circuit.  相似文献   

2.
Summary Tongue-projecting plethodontid salamanders have massive direct ipsilateral retinal afferents to the tectum opticum as well as a large and well developed nucleus isthmi. Retrograde staining revealed two subnuclei: A ventral one projecting to the contralateral tectal hemisphere and a dorsal one projecting back to the ipsilateral side. The isthmic nuclei show a retinotopic organization, which is in register with that of the tectum. Electrophysiological recordings from nucleus-isthmi neurons revealed response properties that are very similar to those found in tectal neurons. Thus, there is no substantial processing of tectal neural activity in the nucleus isthmi. Measurements of peak latencies after electrical and light stimulation suggest the continuous coexistence of 4 representations of the visual field in the tectum mediated by (1) the contralateral and (2) the ipsilateral direct retinal afferents, (3) the uncrossed and (4) the crossed isthmo-tectal projection. (1) and (2) originate at the same moment in the retina and arrive simultaneously in the tectum. It is assumed that in plethodontid salamanders with massive ipsilateral retino-tectal projections depth perception based on disparity cues is achieved by comparison of these images.Representations mediated by (3) and (4) arriving in the tectum at the same time as (1) and (2) originate 10–30 ms earlier in the retina. It is hypothesized that these time differences between (1)/(2) and (3)/(4) are used to calculate three-dimensional trajectories of fast-moving prey objects.Abbreviations EL edge length - FDA fluoresceine dextranamine - RDA tetramethylrhodamine dextranamine - RF receptive field  相似文献   

3.
The integration of multisensory information takes place in the optic tectum where visual and auditory/mechanosensory inputs converge and regulate motor outputs. The circuits that integrate multisensory information are poorly understood. In an effort to identify the basic components of a multisensory integrative circuit, we determined the projections of the mechanosensory input from the periphery to the optic tectum and compared their distribution to the retinotectal inputs in Xenopus laevis tadpoles using dye‐labeling methods. The peripheral ganglia of the lateral line system project to the ipsilateral hindbrain and the axons representing mechanosensory inputs along the anterior/posterior body axis are mapped along the ventrodorsal axis in the axon tract in the dorsal column of the hindbrain. Hindbrain neurons project axons to the contralateral optic tectum. The neurons from anterior and posterior hindbrain regions project axons to the dorsal and ventral tectum, respectively. While the retinotectal axons project to a superficial lamina in the tectal neuropil, the hindbrain axons project to a deep neuropil layer. Calcium imaging showed that multimodal inputs converge on tectal neurons. The layer‐specific projections of the hindbrain and retinal axons suggest a functional segregation of sensory inputs to proximal and distal tectal cell dendrites, respectively. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

4.
Eye-specific patches or stripes normally develop in the visual cortex and superior colliculus of many (but not all) mammals and are also formed, after surgically produced binocular innervation, in the optic tectum of fish and frogs. The segregation of ocular dominance patches or columns has been studied using a variety of anatomical pathway-tracing techniques, by electrophysiological recording of postsynaptic units or field potentials, and by the 2-deoxyglucose method following visual stimulation of only one eye. In the tectum of both fish and frogs and in the cortex and colliculus of mammals, eye-specific patches develop from initially diffuse, overlapping projections. Of the various mechanisms that might cause such segregation, the evidence favors an activity-dependent process that stabilizes synapses from the same eye because of their correlated activity. First, several environmental manipulations affect the segregation of afferents in visual cortex: strabismus and alternate monocular exposure apparently enhance segregation, whereas dark rearing slows the segregation process, and monocular deprivation causes the experienced eye to form larger patches at the expense of those of the deprived eye. Second, blocking activity in both eyes is effective in preventing the segregation both in the tectum of fish and frog and in the visual cortex of cat. With the eyes blocked, alternate stimulation of the optic nerves permits the segregation of ocular dominance, at least onto single cells in the cat visual cortex. These findings are discussed in terms of an activity-dependent stabilization of those synapses having correlated activity (those from neighboring ganglion cells within one eye) but not of those lacking correlated activity (those from left and right eyes). We suggest that the eye-specific patches represent a compromise between total segregation of the projections from the two eyes and the formation of a single continuous retinotopic map across the surface of the cortex or tectum.  相似文献   

5.
Transplantation of neural stem cells for replacing neurons after neurodegeneration requires that the transplanted stem cells accurately reestablish the lost neural circuits in order to restore function. Retinal ganglion cell axons project to visual centers of the brain forming circuits in precise topographic order. In chick, dorsal retinal neurons project to ventral optic tectum, ventral neurons to dorsal tectum, anterior neurons to posterior tectum and posterior neurons to anterior tectum; forming a continuous point-to-point map of retinal cell position in the tectal projection. We found that when stem cells derived from ventral retina were implanted in dorsal host retina, the stem cells that became ganglion cells projected to dorsal tectum, appropriate for their site of origin in retina but not appropriate for their site of implant in retina. This led us to ask if retinal progenitors exhibit topographic markers of cell position in retina. Indeed, retinal neural progenitors express topographic markers: dorsal stem cells expressed more Ephrin B2 than ventral stem cells and, conversely, ventral stem cells expressed more Pax-2 and Ventroptin than dorsal stem cells. The fact that neural progenitors express topographic markers has pertinent implications in using neural stem cells in cell replacement therapy for replacing projecting neurons that express topographic order, e.g., analogous neurons of the visual, auditory, somatosensory and motor systems.  相似文献   

6.
In two turtle species—Emys orbicularis and Testudo horsfieldi—by the method of anterograde and retrograde traicing at the light and electron microscopy level, the existence is proven of direct descending projections from the thalamic nucleus of the tectofugal visual system n. rotunds (Rot) to the optic tectum. After injection of tracers into Rot alone and into Rot with involvement of the tectothalamic tract (Trtth), occasional labeled fibers with varicosities and terminals are revealed predominantly in the deep sublayers of SGFS of the rostral optic tectum, while in the lower amount—in other tectal layers. After the tracer injections into the optic tectum, a few retrogradely labeled neurons were found mainly in the Rot ventral parts and within Trtth. Their localization coincides with that of GABA-immunoreactive cells. Electron microscopy showed the existence of many retrogradely labeled dendrites throughout the whole Rot; a few labeled cell bodies were also present there, some of them being also GABA-immunoreactive. These results allow us to conclude about the existence of reciprocal connections between the optic tectum and Rot in turtles, these connections being able to affect processing of visual information in tectum. We suggest that reciprocity of tectothalamic connections might be the ancestral feature of the vertebrate brain; in the course of amniote evolution the functional significance of this feature can be decreased and even lost in parallel with a rise of the role of direct corticotectal projections.  相似文献   

7.
Summary The central projections of the pineal complex of the silver lamprey Ichthyomyzon unicuspis were studied by injection of horseradish peroxidase. The pineal tract courses caudally along the left side of the habenular commissure, and a few fibers penetrate the brain through the caudalmost portion of this commissure. Most of the fibers, however, continue caudally and enter the brain through the posterior commissure. The pineal tract projects bilaterally to the subcomissural organ, the superficial and periventricular pretectum, the posterior tubercular nucleus, the dorsal and ventral thalamus, the dorsal hypothalamus, the optic tectum, the torus semicircularis, the midbrain tegmentum, and the oculomotor nucleus. A few fibers decussate in the tubercular commissure, but the course of these decussate fibers could not be followed owing to the bilateral nature of the projections. No retrogradely labeled cells were found in the brain. With the exception of the projections to the optic tectum and torus semicircularis, the pineal projections in the silver lamprey are similar to those reported in other anamniote vertebrates.  相似文献   

8.
Summary The retinal projections were studied in the black piranah (Serrasalmus niger) with degeneration and autoradiographic methods. The projections are bilateral to the hypothalamic optic nucleus, the dorsomedial optic nucleus, corpus geniculatum ipsum of Meader (1934) and the optic tectum. Unilateral, crossed projections were traced to the pretectal nucleus and the cortical nucleus. The visual system of the black piranah is exceptionally well developed but has retained many primitive features including the extensive bilateral projections.  相似文献   

9.
Summary The retinal projections of the caecilian Ichthyophis kohtaoensis were investigated by anterograde transport of HRP. The optic tract forms two bundles in the diencephalon, a narrow medial bundle in the optic tectum, and a basal optic tract consisting of few fibres. Terminal fields are in the thalamus, pretectum, tectum, and as a circum-scribed basal optic neuropile in the tegmentum. Thalamic, pretectal and tectal projections are contralateral as well as ipsilateral. The reduced but existing visual projection corresponds to a reduced but existing visually guided behaviour.  相似文献   

10.
Using antero- and retrograde tracer techniques, it has been shown that the intergeniculate leaflet nucleus (IGL) in turtles (Testudo horsfieldi, Emys orbicularis) has reciprocal connections with pretectum and tectum. Neurons projecting to this nucleus are located in the retino- and non-retinorecipient nuclei of pretectum and, mostly, in the deep periventricular layer of tectum. Neurons containing neuropeptide Y (NPY) and GABA are a possible source of projections from IGL to the same structures of pretectum and tectum. The data obtained allow concluding the presence of a morphological substrate for interaction of the circadian and non-circadian (visual-motor, perceptive) visual systems in reptiles as well as in other amniotes—birds and mammals.  相似文献   

11.
Many parts of the visual system contain topographic maps of the visual field. In such structures, the binocular portion of the visual field is generally represented by overlapping, matching projections relayed from the two eyes. One of the developmental factors which helps to bring the maps from the two eyes into register is visual input. The role of visual input is especially dramatic in the frog, Xenopus laevis. In tadpoles of this species, the eyes initially face laterally and have essentially no binocular overlap. At metamorphosis, the eyes begin to move rostrodorsally; eventually, their visual fields have a 170 degree region of binocular overlap. Despite this major change in binocular overlap, the maps from the ipsilateral and contralateral eyes to the optic tectum normally remain in register throughout development. This coordination of the two projections is disrupted by visual deprivation. In dark-reared Xenopus, the contralateral projection is nearly normal but the ipsilateral map is highly disorganized. The impact of visual input on the ipsilateral map also is shown by the effect of early rotation of one eye. Examination of the tectal lobe contralateral to the rotated eye reveals that both the contralateral and the ipsilateral maps to that tectum are rotated, even though the ipsilateral map originates from the normal eye. Thus, the ipsilateral map has changed orientation to remain in register with the contralateral map. Similarly, the two maps on the other tectal lobe are in register; in this case, both projections are normally oriented even though the ipsilateral map is from the rotated eye. The discovery that the ipsilateral eye's map reaches the tectum indirectly, via a relay in the nucleus isthmi, has made it possible to study the anatomical changes underlying visually dependent plasticity. Retrograde and anterograde tracing with horseradish peroxidase have shown that eye rotation causes isthmotectal axons to follow abnormal trajectories. An axon's route first goes toward the tectal site where it normally would arborize but then changes direction to reach a new tectal site. Such rearrangements bring the isthmotectal axons into proximity with retinotectal axons which have the same receptive fields. Anterograde horseradish peroxidase filling has also been used to study the trajectories and arborizations of developing isthmotectal axons. The results show that the axons enter the tectum before the onset of eye migration but do not begin to branch profusely until eye movement begins to create a zone of binocular space.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Summary Retinofugal and retinopetal projections were investigated in the teleost fish Channa micropeltes (Channiformes) by means of the cobaltous lysine and horseradish peroxidase (HRP) tracing techniques. Retinofugal fibers cross completely in the optic chiasma. A conspicious lamination is present in those parts of the optic tract that give rise to the marginal branches of the optic tract. This layering of optic fibers continues in the marginal branches to mesencephalic levels. Retinal projections to the preoptic and hypothalamic regions are sparse; they are more pronounced in the area of pretectal nuclei. The medial pretectal complex and the cortical pretectal nucleus are more fully differentiated than in other teleostean species. Further targets include the thalamus and the optic tectum. The course of major optic sub-tracts and smaller fascicles is described. Retinopetal neurons are located contralaterally in a rostral and a caudal part of the nucleus olfactoretinalis, and in a circumscribed nucleus thalamoretinalis. The present findings are compared with reports on other teleost species.  相似文献   

13.
Niell CM  Smith SJ 《Neuron》2005,45(6):941-951
The visual pathway from the retina to the optic tectum in fish and frogs has long been studied as a model for neural circuit formation. Although morphological aspects, such as axonal and dendritic arborization, have been well characterized, less is known about how this translates into functional properties of tectal neurons during development. We developed a system to provide controlled visual stimuli to larval zebrafish, while performing two-photon imaging of tectal neurons loaded with a fluorescent calcium indicator, allowing us to determine visual response properties in intact fish. In relatively mature larvae, we describe receptive field sizes, visual topography, and direction and size selectivity. We also characterize the onset and development of visual responses, beginning when retinal axons first arborize in the tectum. Surprisingly, most of these properties are established soon after dendrite growth and synaptogenesis begin and do not require patterned visual experience or a protracted period of refinement.  相似文献   

14.
Summary The retinal projections inEsox niger, as determined with the aid of a modified cobalt-lysine method, are considerably more extensive in the diencephalon and pretectum than in other teleost fishes so far examined. Although most retinal axons terminate contralaterally, rare fibers can be traced to the same aggregates ipsilaterally. The retinohypothalamic projection appears larger than hitherto reported in teleosts, and the dorsomedial optic tract issues fibers to a series of cell clusters extending from the rostral thalamus to mid-torus levels. A retinal projection to a presumed ventrolateral optic nucleus (VLO) is described for the first time in a teleost. Other targets of retinal fibers include the nucleus geniculatus lateralis ipse of Meader (GLI), the pretectal nucleus (P), the cortical nucleus and a well-developed ventromedial optic nucleus (VMO). The projection to the optic tectum is principally to the stratum fibrosum et griseum superficiale (SFGS) and stratum marginale (SM), but a considerable number of axons also course through the stratum album centrale (SAC) before terminating there or piercing the stratum griseum centrale (SGC) and terminating in SFGS. Rare terminal arborizations of retinal fibers were also observed in stratum griseum centrale (SGS) and in the stratum griseum periventriculare (SGC) in restricted portions of the tectum. Because of the relatively large size of the visual structures inE. niger it is a potentially useful model for future experimental studies on the visual system.  相似文献   

15.
Summary The retinal projections in 2-year-old salmon smolt (Oncorhynchus nerka) are significantly different from those observed in other teleosts examined to date in that the projections are more extensive. Very noticeable are extensive projections to most of the dorsal thalamus, to all layers of the optic tectum, and into the periaqueductal gray of the torus semicircularis. The salmon smolt has bilateral retinal projections to the diencephalon and pretectum. A small retinal projection to the lateral habenular nucleus has not been described previously. Although these findings suggest striking differences in retinal projections among teleosts, this variation may relate to age differences since the previously studied teleosts were adults.  相似文献   

16.
Impaired attention is the hallmark consequence of prenatal cocaine exposure (PCE), affecting brain development, learning, memory and social adaptation starting at an early age. To date, little is known about the brain structures and neurochemical processes involved in this effect. Through focusing on the visual system and employing zebrafish as a model, we show that PCE reduces expression of dopamine receptor Drd1, with levels reduced in the optic tectum and other brain regions, but not the telencephalon. Organism‐wide, PCE results in a 1.7‐fold reduction in the expression of the dopamine transporter (dat), at baseline. Acute cocaine administration leads to a 2‐fold reduction in dat in drug‐naive larvae but not PCE fish. PCE sensitizes animals to an anxiogenic‐like behavioral effect of acute cocaine, bottom‐dwelling, while loss of DAT due to genetic knockout (DATKO) leads to bottom‐dwelling behavior at baseline. Neuronal calcium responses to visual stimuli in both PCE and DATKO fish show tolerance to acute cocaine in the principal regions of visual attention, the telencephalon and optic tectum. The zebrafish model can provide a sensitive assay by which to elucidate the molecular mechanisms and brain region‐specific consequences of PCE, and facilitate the search for effective therapeutic solutions.  相似文献   

17.
How does each ingrowing retinal fiber select the right spot in the overall retinotopic projection? Chemospecific surface interactions appear to be sufficient only to organize a crude retinotopic map on the tectum during regeneration of the optic nerve of goldfish. Precise retinotopic ordering is achieved via an activity-dependent stabilization of appropriate synapses, based on the correlated activity of neighboring ganglion cells of the same receptive field type in the retina. Four treatments have been found to block the sharpening process: 1) blocking activity of the ganglion cells with intraocular tetrodotoxin (TTX); 2) rearing in total darkness; 3) correlated activation of all ganglion cells via stroboscopic illumination in a featureless environment; 4) block of retinotectal synaptic transmission with alpha-bungarotoxin. These experiments support a role for normal visually driven activity in sharpening the diffuse projection, and demonstrate that the correlated activity of the optic fibers interacts within the postsynaptic cells, probably through the summation of excitatory postsynaptic potentials. Intraocular TTX experiments suggest that a similar mechanism may drive both the formation of ocular dominance patches in fish tectum and kitten visual cortex and the segregation of different receptive field types in the lateral geniculate nucleus. Thus, it may be a general mechanism whereby the diffuse projections of early development are brought to a mature level of organization.  相似文献   

18.
Summary The retinal projections to the brain were studied in three species of European Salamandridae using anterograde transport of horseradish peroxidase and autoradiography. The results obtained were basically identical for all species and confirmed earlier findings on the fiber supply to the preoptic nucleus and the basal optic neuropil. In the anterior thalamus projections to three distinct terminal fields are clearly visible: (i) the diffusely stained corpus geniculatum thalamicum, (ii) the neuropil of Bellonci, pars lateralis, and (iii) a dorsomedial terminal field, the neuropil of Bellonci, pars medialis. Caudal to these terminal fields is an almost terminal-free region, the lateral neuropil. In the posterior thalamus a medial terminal field, the uncinate field, and a laterally located terminal field, the posterior thalamic neuropil, are distinguishable. The tectum opticum displays as many as four dense layers of retinofugal fibers and terminals in the rostral part and, in addition, a more densely stained strip of neuropil running from rostral to caudal over the tectum. The extent of ipsilateral fibers is greater than previously reported in other urodele species. They supply the medial and the lateral parts of the neuropil of Bellonci, the uncinate field, and reach the tectum opticum via the medial optic tract. Further, they form terminals in the innermost optic fiber layer throughout the rostral half of the ipsilateral tectum. A small proportion of ipsilateral fibers contributes very sparsely to all other thalamic terminal fields, leaving only the caudal part of the tectum and several layers of the rostral tectum completely free of a direct retinofugal fiber supply.  相似文献   

19.
Secreted Frizzled‐Related Proteins (SFRPs) are extracellular modulators of Wnt and Bmp signaling. Previous studies in birds and fishes have shown that Sfrp1, a member of this family, is strongly expressed throughout the development of the eye contributing to the specification of the eye field, retina neurogenesis and providing guidance information to retina ganglion cell axons. Here, we report that in medaka fish (Oryzias latipes) the expression of olSfrp5, which is closely related to olSfrp1, largely overlaps with that of olSfrp1 in the eye, but is additionally expressed in the developing midbrain and gut primordium. Morpholino‐based interference with olSfrp5 expression causes microphthalmia and reduction of the tectum size associated with an increase in apoptotic cell death in these structures. Furthermore, interference with the levels of olSfrp5 expression impairs the patterning of the ventral portion of the optic cup, leading in some cases to a fissure coloboma. These early defects are followed by an abnormal retinal and tectal neurogenesis. In particular, only reduced numbers of photoreceptor and RGC were generated in olSfrp5 morphants retinas. The results point to an important role of olSfrp5 in visual system formation and indicate that olSfrp1 and olSfrp5, despite their overlapping expression, have only partially redundant function during eye development. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

20.
In contrast to the situation in mammals and birds, neurons in the central nervous system (CNS) of fish—such as the retinal ganglion cells—are capable of regenerating their axons and restoring vision. Special properties of the glial cells and the neurons of the fish visual pathway appear to contribute to the success of axonal regeneration. The fish oligodendrocytes lack the axon growth inhibiting molecules that interfere with axonal extension in mammals. Instead, fish optic nerve oligodendrocytes support—at least in vitro—axonal elongation of fish as well as that of rat retinal axons. Moreover, the fish retinal ganglion cells re-express upon injury a set of growth associated cell surface molecules and equip the regenerating axons throughout their path and up into their target, the tectum opticum with these molecules. This may indicate that the injured fish ganglion cells reactivate the cellular machinery necessary for axonal regrowth and pathfinding. Furthermore, the target itself provides positional marker molecules even in adult fish. These marker molecules are required to guide the regenerating axons back to their retinotopic home territory within the tectum. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号