共查询到20条相似文献,搜索用时 15 毫秒
1.
Thomas A. Keil 《Tissue & cell》1982,14(3):451-462
Antennal olfactory hairs of Antheraea polyphemus were investigated by means of transmission electron microscopy. Adequate preservation of dendrites and extracellular pore tubules is obtained by mechanical opening of the hair lumen and subsequent chemical fixation. The dendritic membrane has a cell coat. The dendrites contain microfilamentous structures in addition to their cytoplasmatic microtubules. The extracellular pore tubules traverse the hair cuticle and reach into the hair lumen for maximally 350 nm. Their diameter varies between 20 and 40 nm, depending on the preparation method. They consist of an electron-dense wall and an electron-lucent core. The wall has a helical substructure and is covered with a fuzzy coat. Contacts of pore tubules and dendritic membranes occur wherever dendrites are near the inner surface of the hair cuticle. Some of the pore tubules terminate approximately at right angles on the dendritic membrane, others lie against the membrane. The contact seems to be made via the surface coats of the tubules and the membrane. The structure of pore tubules which had been negatively stained with uranyl acetate is similar to the conventionally thin-sectioned material. The observations provide support for earlier assumptions that pore tubules are the pathways by which odor molecules reach the dendritic membrane. 相似文献
2.
3.
The number and distribution of chemosensilla located on different organs of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) males and females are described based on observations using scanning electron microscopy, selective staining with silver nitrate, and gustatory electrophysiological recording. The antennae and the fifth tarsomere of the prothoracic legs of both sexes bear chemosensilla: uniporous chaetica and multiporous trichoidea sensilla. However, there is a sexual dimorphism in the number and size of sensilla on these organs. The distal part of the ovipositor has uniporous gustatory chemosensilla of the chaetica type. The involvement of these sensilla in oviposition site selection by B. fusca is discussed. 相似文献
4.
很多昆虫具有极其灵敏的味觉感受系统, 在其取食选择、 交配和产卵等过程中起重要作用。相对于昆虫的嗅觉机制, 对昆虫味觉感受机制的研究较少。传统的味觉感受研究主要集中在味觉感器外部形态、 味觉电生理和行为学上。近年来随着分子遗传学、 生物信息学和神经生物学技术的应用, 昆虫味觉的研究不断深入, 主要体现在下列两方面: (1)味觉受体方面, 通过分子生物信息学等手段获得了多种昆虫的味觉受体, 不同种昆虫之间受体数目差异较大, 不同受体之间氨基酸的相似性较低。通常, 根据味觉受体配体物质的性质可以把味觉受体分为取食抑制素受体和取食刺激素受体两大类。(2)味觉神经元的投射及味觉编码机制方面, 多个研究表明昆虫外围味觉神经元在中枢神经系统中的投射部位为咽下神经节和后脑, 但是不同性质的受体神经元投射的具体位置有所不同。本文对昆虫味觉感器和神经元的基本特征, 味觉受体的进化、 表达和功能, 味觉神经元在中枢神经系统中的投射, 味觉神经元的编码机制及味觉可塑性等进行了综述。 相似文献
5.
6.
R. C. Tarumingkeng Professor H. C. Coppel Professor F. Matsumura 《Cell and tissue research》1976,173(2):173-178
Summary Three types of setae were found on the antenna of workers of C. formosanus. Sensilla basiconica function as chemoreceptors. They are non-socketed, with fixed plate base, thin walled, and perforated. Pore tubules are contained within the cuticular pores of s. basiconica. The pore tubules have direct contact with the dendritic branches within the sensilla. The other sensilla are tactile mechanoreceptors. The longest setae (sensilla trichodea) are thick walled, socketed, mononeuronic, and non-perforated. The shorter mechanoreceptors (sensilla chaetica) have the same characteristics as s. trichodea, exept that they are sometimes dineuronic. The numbers and distribution of the sensilla were established.Supported by the College of Agricultural and Life Sciences, University of Wisconsin, Madison, and in part by the M.U.C.I.A. program, the National Science Foundation Grant No. 36700, and the U.S.D.A., Forest Service Cooperative Project 12-13. The authors also acknowledge the SEM and TEM assistance of S. D. Carlson, M. Garment, and G. Gaard, respectively 相似文献
7.
触角感器是昆虫对环境变化产生行为响应的重要基本结构单元,作为昆虫内部神经系统与外部环境进行信息交流的关键接口,受到广泛关注。由于不同环境压力的作用,长期适应性进化使昆虫触角上着生有不同类型的感器,且执行着差异化的生物学功能。触角感器在昆虫识别寄主、寻找配偶、躲避天敌等行为变化中具有重要作用,若深入理解昆虫行为变化的内在机理,则有必要清晰认识昆虫触角感器类型与潜在功能。本文对已有研究结果进行系统性综述与总结。截止目前,共发现有61种昆虫触角感器类型,且触角感器存在种内与种间特征差异。同时针对12种常见的触角感器功能进行梳理,提出昆虫触角感器未来可深入开展的研究方向。本文全面了解各昆虫触角感器类型特征和功能,为从形态结构方面进行昆虫分类研究提供新视角,也为今后从化学生态学角度深入开展昆虫行为对环境改变的适应性等研究提供科学依据。 相似文献
8.
An electron-microscope study of spermiogenesis and the ultrastructure of mature sperm was made on Eurygaster integriceps. During spermiogenesis, a manchette consisting of two large groups of microtubules and an unusual centriolar adjunct are formed. The latter looks like two half cylinders located almost at right angles to one another. Its wall consists of several dark layers divided by lighter areas. The centriole and its adjunct are not identified in the mature sperm. Bug spermatids have a large amount of amorphous pericentriolar matter, which assists in establishing an unusual nuclear pattern. The mature sperm is distinguished by a number of unique features. Its nucleus consists of three interconnected parts: the inner and outer cylinders and a part freely suspended along the middle piece. The intranuclear channel is blindly closed at the apical end and filled with dark amorphous matter that originates from the pericentriolar matter. The acrosome has an extracellular part resembling a diagonally striated rod, which is sometimes disengaged from its surface. The axoneme has 9+9(2) + 2 tubules. It is connected with the Nebenkern by dark arms. 相似文献
9.
In the current study, midgut α-amylase from Sunn pest ( Eurygaster integriceps Puton) (Hemiptera: Scutelleridae), one of the most serious pests of wheat and barley in the wide area of the Near and Middle East, West Asia, and many of the new independent states of central Asia, were purified and characterized. Amylase activity was detected in the midgut of the insects which were collected from both over-wintering sites during winter and feeding insects during spring. Amylase activities in the midgut of over-wintering and feeding insects were 5.71 and 3.43 U/mg protein, respectively. Initially, a native electrophoretic analysis of E. integriceps crude midgut extract showed that there are two major amylase forms in the midgut. Through the sequence of ammonium sulfate precipitation, first by gel filtration chromatography (Sephadex G-75), anion exchange chromatography (diethylaminoethylcellulose) and second by gel filtration chromatography, specific activity of α-amylase of E. integriceps increased 44-fold from approximately 3 to 133 U/mg protein. Analysis of purified amylases by sodium dodecylsulfate polyacrylamide gel electrophoresis showed that these proteins had estimated molecular masses of 49 and 52 kDa. Optimum temperature was determined to be 30–40°C. The optimum pH value was 6.5 and the K mapp for soluble starch was 0.54%. 相似文献
10.
《Arthropod Structure & Development》2014,43(2):117-122
After blood feeding on a host, bed bugs, Cimex lectularius, assemble in aggregation sites away from the host. Off-host aggregation is mediated by a combination of mechanical and chemical stimuli associated with bug feces. Partial antennectomies indicated removal of flagellomeres did not affect aggregation, but removal of the whole pedicel or its distal half significantly reduced (P < 0.01) aggregation, suggesting that sensilla related to off-host aggregation occur on the distal half of the pedicel. Scanning electron microscopy (SEM) revealed that serrated hairs were distributed throughout the pedicel, but newly described smooth hairs were present mainly on the distal half, and a distinct patch of grooved pegs, smooth pegs and immersed cones was present on the posterior edge of the distal half of the pedicel in adults, but not in nymphs. Numbers of different types of sensilla increased significantly during metamorphosis from first instar to adult (P < 0.05), but were similar between genders (P = 0.11) and between females from a laboratory and field strain of bugs (P = 0.19). Transmission electron microscopy (TEM) revealed that cuticular pores were present in the two types of pegs, indicating that the pegs have an olfactory function. The smooth hairs resembled gustatory sensilla previously described in Cimex hemipterus F. The existence of both olfactory and gustatory sensilla on the distal half of the pedicel suggests those sensilla may be the sensory basis of off-host aggregation behavior. 相似文献
11.
Liu Jing Li Zhaoqun Luo Zongxiu Cai Xiaoming Bian Lei Xin Zhaojun Zongmao Chen 《Archives of insect biochemistry and physiology》2019,101(1)
Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae) are sibling pest species that co‐occur on tea plants. The sex pheromone components of both species contain (Z,Z,Z)‐3,6,9‐octadecatriene and (Z,Z)‐3,9‐cis‐6,7‐epoxy‐octadecadiene. E. obliqua has (Z,Z)‐3,9‐cis‐6,7‐epoxy‐nonadecadiene as an additional sex pheromone component, which ensures reproductive segregation between the two species. To ascertain the detection mechanism of olfactory organs for sex pheromone components of E. grisescens and E. obliqua, we applied scanning electron microscopy and single sensillum recording to compare antennal morphology and sensillum physiology in the two species. There was no apparent morphological difference between the antennae of the two species. Both species responded similarly to all three sex pheromone components, including, E. obliqua specific component. The distribution patterns of antennal sensilla trichodea differed between the two species. Sex pheromone olfactory sensing in these sibling species appears to be determined by the density of different types of olfactory sensing neurons. Dose‐dependent responses of sensilla trichodea type 1 to (Z,Z)‐3,9‐cis‐6,7‐epoxy‐octadecadiene, the most abundant component, showed an “all or none” pattern and the other two components showed sigmoidal dose‐response curves with a half threshold of 10?4 (dilution equal to the concentration of 10 μg/μl). These results suggest that the major sex pheromone component functions as an on–off controller while secondary components function as modulators during olfactory transmission to the primary olfactory center. 相似文献
12.
Dr. Linde Schaller 《Cell and tissue research》1982,225(1):129-142
Summary Antennal sensilla of Leucophaea maderae were investigated electrophysiologically, labeled and then examined with the scanning or transmission electron microscope. The sensilla can be classified into morphological types according to their external shape and the structure of their hair wall. Sensilla showing similar reaction spectra of their cells can be cathegorized into physiological groups. The morphological classification corresponds to the physiological grouping: one morphological type of sensillum comprises one or several groups of physiologically similar sensilla. In many of these groups constant combinations of physiologically different cells occur. The possible functional significance of the relationships found between the structural features of the sensilla and the physiological properties of their sensory cells is discussed.Supported by the Deutsche Forschungsgemeinschaft (Scha 292/1) 相似文献
13.
稻小秆蝇触角感受器的超微结构研究 总被引:3,自引:0,他引:3
采用扫描电子显微镜对稻小秆蝇触角感受器进行了观察和研究,结果表明,稻小秆蝇触角上共存在5种感受器,分别为毛形感受器、刚毛型感受器、柱形感受器、锥形感受器蒲姆氏鬃。对各种触角感受器的形态、分布特点进行了描述,并对其功能进行了一定的探讨。 相似文献
14.
ABSTRACT. Approximately fifteen gustatory sensilla are present on the galeae of adult Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). In the SEM, these sensilla are not distinguishable morphologically, but some of them differ physiologically. All are sensitive to sucrose, while only a few respond to gamma amino butyric acid (GABA). One, called the alpha sensillum, is significantly more sensitive to GABA than the others. The same sensory cell predominates in the alpha sensillum responses to GABA and sucrose. This example of differential specificity among sensilla, in an apparently uniform sensory field, is discussed. 相似文献
15.
Odor presentation generates both fast oscillations and slow patterning in the spiking activity of the projection neurons (PNs)
in the antennal lobe (AL) of locusts, moths and bees. Experimental results indicate that the oscillations are the result of
the interaction between the PNs and the inhibitory local neurons (LNs) in the AL; e.g., blocking inhibition by application
of GABA-receptor antagonists abolishes these oscillations. The slow patterning, on the other hand, was shown to be somewhat
resistant to such blockage. In a H-H model, we reproduce both the oscillations and the slow patterning. As previously suggested,
the oscillations are the result of the interaction between the PNs and LNs. We suggest that calcium and calcium-dependent
potassium channels (found in PNs of bees and moths) are sufficient to account for the slow patterning resistant to the application
of GABA-receptor antagonists. The intrinsic bursting property of the PNs, resulting from these additional modeled currents,
give rise to another network feature that was seen experimentally in locusts: A relatively small increase in the number of
additional generated PN action potentials when LN input is blocked. Consequently, the major effect of network inhibition is
to redistribute the action potentials of the PNs from bursting to one action potential per cycle of the oscillations.
Action Editor: Christiane Linster 相似文献
16.
A comparison was performed of the antennal sensilla of females of four chalcid wasp species Ceratosolen emarginatus Mayr, 1906, Sycophaga sp., Philotrypesis longicaudata Mayr, 1906, and Sycoscapter roxburghi Joseph, 1957, which are specific and obligatory associated with Ficus auriculata (Lour, 1790). The four species exhibit different oviposition strategies in the fig ovules where their offspring hatch and develop. Antennal sensilla morphology was evaluated using scanning electron microscopy. Females of the four species present 11 morphologically similar types of sensilla: trichoid sensilla, sensilla obscura, chaetica sensilla 1 and 2, which all have mechanosensory functions; uniporous basiconic sensilla, which are presumably contact chemosensilla; basiconic capitate peg sensilla, coeloconic sensilla 1, multiporous basiconic and placoid sensilla, which may be regarded as olfactory sensilla, and coeloconic sensilla 2 and 3, which are presumed to be proprioreceptors or pressure receptors. The four species have significant differences in the abundance and arrangement of trichoid sensilla and chaetica sensilla 1 on the flagellum. The coeloconic sensilla and sensilla obscura only occur on the antennae of C. emarginatus that enter figs. The chemosensilla which are presumably involved in host discrimination, i.e., basiconic sensilla, multiporous placoid sensilla and basiconic capitate peg sensilla, are similar in shape and configuration, although they present some differences in abundance. These findings provide practical information on the adaptations of fig wasps and the relationship between multisensory antennae and functions in fig wasp behaviour. 相似文献
17.
18.
Christina Kelber Wolfgang Rössler Christoph Johannes Kleineidam 《Developmental neurobiology》2010,70(4):222-234
In the leaf‐cutting ant Atta vollenweideri, the worker caste exhibits a pronounced size‐polymorphism, and division of labor is dependent on worker size (alloethism). Behavior is largely guided by olfaction, and the olfactory system is highly developed. In a recent study, two different phenotypes of the antennal lobe of Atta vollenweideri workers were found: MG‐ and RG‐phenotype (with/without a macroglomerulus). Here we ask whether the glomerular numbers are related to worker size. We found that the antennal lobes of small workers contain ~390 glomeruli (low‐number; LN‐phenotype), and in large workers we found a substantially higher number of ~440 glomeruli (high‐number; HN‐phenotype). All LN‐phenotype workers and some small HN‐phenotype workers do not possess an MG (LN‐RG‐phenotype and HN‐RG‐phenotype), and the remaining majority of HN‐phenotype workers do possess an MG (HN‐MG‐phenotype). Using mass‐staining of antennal olfactory receptor neurons we found that the sensory tracts divide the antennal lobe into six clusters of glomeruli (T1–T6). In LN‐phenotype workers, ~50 glomeruli are missing in the T4‐cluster. Selective staining of single sensilla and their associated receptor neurons revealed that T4‐glomeruli are innervated by receptor neurons from the main type of olfactory sensilla, the Sensilla trichodea curvata. The other type of olfactory sensilla (Sensilla basiconica) exclusively innervates T6‐glomeruli. Quantitative analyses of differently sized workers revealed that the volume of T6 glomeruli scales with the power of 2.54 to the number of Sensilla basiconica. The results suggest that developmental plasticity leading to antennal‐lobe phenotypes promotes differences in olfactory‐guided behavior and may underlie task specialization within ant colonies. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 222–234, 2010. 相似文献
19.
Antoine Couto Simon Marty Erika H. Dawson Patrizia d'Ettorre Jean-Christophe Sandoz Stephen H. Montgomery 《Biological reviews of the Cambridge Philosophical Society》2023,98(6):2226-2242
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera. 相似文献
20.
Enno Merivee Angela Ploomi Marit Milius Anne Luik Mikk Heidemaa 《Physiological Entomology》2005,30(2):122-133
Abstract. Electrophysiological responses of antennal taste bristles to 100 mm acetate and phosphate buffers were tested at pH 3–11 in the ground beetle Pterostichus oblongopunctatus (F.) (Coleoptera, Carabidae). Additionally, responses of these sensilla to 10 and 100 mm phosphate buffers were compared with each other. Generally, in response to these stimulating solutions, two sensory cells, classified as a salt cell (cation cell) and a pH cell, respectively, showed action potentials distinguished by differences in their amplitudes and polarity of spikes. The firing rate of the cation cell increased with increasing buffer concentration, and was influenced by buffer pH in a complicated way. The best stimulus for the second cell (pH cell) was pH of the stimulating buffer solution. As the pH of the stimulus solution increased, higher rates of firing were produced by the pH cell. For example, the number of action potentials elicited by 100 mm phosphate buffer at pH 11.1 was approximately 16-fold higher compared with that at pH 8.1, and firing rates during the first second of the response were 27.9 and 1.7 imp/s, respectively. The pH cell did not fire or fired at very low frequency (first second response below 5 imp/s) at pH 3–6. This level of acidity probably represents the pH preferences of this ground beetle in its forest habitat and hibernating sites. By contrast to the cation cell, the pH cell responded to increases in buffer concentration by decreasing its firing rate. 相似文献