首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By reaction of 1,2-diaminocyclohexane with the 2,3-butanedione monoxime in the presence of ZnCl2, a new Schiff base complex was obtained. This complex was characterized by elemental analyses, FT-IR, 1H NMR, UV–Vis, and conductivity measurements. The reactivity of this complex to human serum albumin (HSA) under simulative physiological conditions was studied by spectroscopic and molecular docking analysis. Experimental results at various temperatures indicated that the intrinsic fluorescence of protein was quenched through a static quenching mechanism. The negative value of enthalpy change and positive value of entropy change indicated that both hydrogen bonding and hydrophobic forces played a major role in the binding of Zn(II) complex to HSA. FT-IR, three-dimensional fluorescence, and UV–Vis absorption results showed that the secondary structure of HSA changed after Zn(II) complex bound to protein. The binding distance was calculated to be 4.96 nm, according to fluorescence resonance energy transfer. Molecular docking results confirmed the spectroscopic results and showed that above complex is embedded into subdomain IIA of protein. All these experimental and computational results clarified that Zn(II) complex could bind with HSA effectively, which could be a useful guideline for efficient Schiff-base drug design.  相似文献   

2.
Liu J  Tan LF  Jin LH  Luan F 《DNA and cell biology》2012,31(2):250-258
The binding properties of [Ru(bpy)(2)(H(2)IIP)](2+) (1) {bpy=2,2'-bipyridine, H(2)IIP=2-(indole-3-yl)-imidazolo[4,5-f][1,10]phenanthroline} with calf thymus DNA (CT-DNA) and yeast tRNA have been investigated comparatively by different spectroscopic and viscosity measurements. The results suggest that the affinity of complex 1 binding with yeast tRNA is stronger than that of complex 1 binding with CT-DNA, and complex 1 is a better enantioselective binder to yeast tRNA than to CT-DNA. The toxicity of complex 1 was concentration dependent, and HL-60 cells are more sensitive to complex 1 than Hep-G2 cells; complex 1 could induce Hep-G2 cell apoptosis.  相似文献   

3.
A new complex [Pt(NH3)2(ddtc)]NO3.2H2O as a 1:1 electrolyte has been prepared. This was characterized by spectroscopic methods. The electronic absorption spectrum of this complex in water suggests that it has a square planar geometry. The infrared, 1H NMR and x-ray photoelectron spectroscopic studies suggest the bonding of ammonia molecules and diethyldithiocarbamate as bidentate ligand to platinum(II) in this complex. The 50% inhibition value of this complex against P388 lymphocytic leukemia cells is comparable with cisplatin. This complex interacts with calf thymus DNA by coordinate covalent bond.  相似文献   

4.
Hydrolases containing two metal ions connected by a bridging ligand catalyze reactions important in carcinogensis, tissue repair, post-translational modification, control and regulation of biochemical pathways, and protein degradation. The aminopeptidase from Aeromonas proteolytica serves as a paradigm for the study of such bridged bimetallic proteases since its three-dimensional structure is known to very high resolution and its catalytic reaction is amenable to spectroscopic examination. Herein, we report the X-ray crystal structure at 1.9 A resolution of AAP complexed with 1-butaneboronic acid (BuBA). This structure suggests that this complex represents a snapshot of the proteolytic reaction in an arrested form between the Michaelis complex and the transition state. Comparison of the structure with spectroscopic and other data allows us to conclude that the apparently structurally symmetrical dizinc site is actually asymmetric electrostatically.  相似文献   

5.
Rezanka T  Sigler K 《Phytochemistry》2007,68(9):1272-1276
The structure of sinaicinone, isolated from the aerial parts of the Egyptian medicinal plant Hypericum sinaicum, has been elucidated by means of spectroscopic data such as UV, IR, MS, 1D and 2D NMR spectra, and chemical degradation. It is a complex adamantanyl derivative with a unique skeleton and oxygenated side chains.  相似文献   

6.
The Al(III)-salophen complex 1 exhibited strong spectroscopic changes specifically upon addition of polyG and GpG, while double stranded DNA and RNA, and single stranded polyA, polyU and polyC induced negligible spectral changes of 1. Titrations with mono-nucleotides yielded no spectroscopic changes, revealing that there must be at least two consecutive guanines in single stranded oligonucleotide structure for a measurable spectroscopic change of 1. Preliminary results show that 1 has moderate antiproliferative effect on a number of human tumour cell lines.  相似文献   

7.
The synthesis, isolation, spectroscopic and structural elucidation of sympathomimetic amine, tyramine dihydrogenphosphate are of interest due to its biological activity and the establishing correlation between spectroscopic properties and structure. The complex approach for investigation included single crystal X-ray diffraction, new technique in linear-polarized IR-spectroscopy in solid state and quantum chemical calculations with a view to predict the electronic structure and vibrational data of interacting species in entitled compound, the correlation structure–spectroscopic properties as well as the influence of intermolecular interaction on IR-characteristic bands are carried out.  相似文献   

8.
Koshikamide A2 (2) was isolated as a cytotoxic metabolite from a marine sponge of Theonella sp. Its structure was elucidated to be a linear undecapeptide by spectroscopic and chemical methods, together with enzymatic conversion to known koshikamide A1 (1). The new peptide moderately inhibited the growth of P388 murine leukemia cells.  相似文献   

9.
Copper(II) complexes of carvedilol molecule, (CARVH): 1-[carbazolyl-(4)-oxyl]-3-[(2-methoxyphenoxyethyl)-amino]-2-propanol, were synthesized and characterized with respect to their structural and spectroscopic properties. The crystal structure of [Cu(Carv)Cl(MeOH)](2).4MeOH complex revealed that the molecule chelates two Cu(II) ions via the N and O atoms belonging to the amino and propanol moiety, respectively. The coordination behaviour of carvedilol studied by 1H nuclear magnetic resonance (NMR, 1-D and 2-D-COSY) spectroscopy in dimethyl sulfoxide solution at room temperature, allowed us to obtain structural information and to identify the donor atoms involved in the coordination process in solution.  相似文献   

10.
Derivatives of the fluorescent probes fluorescein and rhodamine specifically and covalently modify the highly reactive thiol (SH1) of myosin subfragment 1 (S1). Both probes develop circular dichroism (CD) upon modification of SH1 at the visible absorption band of the chromophore. A model system of chiral complexing agents (aromatic chiral amines) interacting with fluorescein in solvent develops a CD signal that mimics that produced by S1. The model system suggests that a specific interaction of the probe with an aromatic chiral residue in the SH1 binding pocket induces the CD signal. Several other spectroscopic signals, including absorption and fluorescence intensity and anisotropy, characterize the fluorescein or rhodamine binding to SH1. A coupled dipole method is adapted to interpret these spectroscopic signals in terms of the probe-S1 complex conformation. The computation of the orientation of the principal hydrodynamic frame (PHF) of S1 from its crystallographic -carbon backbone structure permits the known orientation of the probe in the PHF of S1 to further constrain the conformation of the probe-S1 complex. The coupled dipole interpretation of spectroscopic data combined with constraints relating the probe dipole orientation to the PHF of S1 determines the conformation of the probe-S1 complex. The methods developed here are applied to the spectroscopic signals from fluorescein or rhodamine in the SH1 binding site of S1 to obtain an atomic resolution model of the probe-S1 conformation [Ajtai and Burghardt, Biochemistry, 34 (1995) 15943–15952].  相似文献   

11.
4,6-O-Ethylidine-N-(2-hydroxybenzylidene)-beta-D-glucopyranosylamine (H(3)L(1)) and N-(5-bromo-2-hydroxybenzylidene-4,6-O-ethylidine-beta-D-glucopyranosylamine (H(3)L(2)) molecules possessing a single bond C-1 single bond N double bond C(H) single bond moiety for metal-ion binding were synthesized by condensing the 4,6-O-ethylidene-beta-D-glucopyranosylamine with salicylaldehyde or 5-bromosalicylaldehyde. Complexes of these ligands with Zn(II) were isolated and characterized using elemental analysis, FTIR, UV-Vis absorption, NMR spectroscopic and FAB mass spectrometric techniques. The structure of the Zn(II) complex derived from H(3)L(1) was established for the first time by a single-crystal X-ray diffraction study. The anomeric nature of the saccharide moiety was established based on (1)H NMR studies and was confirmed by the crystal structure. Further, the structure and binding aspects of the ligand, and the coordination features of this in its Zn(II) complex were derived from the corresponding crystal structure.  相似文献   

12.
The Escherichia coli mazEF operon defines a chromosomal addiction module that programs cell death under various stress conditions. It encodes the toxic and long-lived MazF and the labile antidote MazE. The denaturation of MazE is a two-state reversible dimer-monomer transition. At lower concentrations the denatured state is significantly populated. This leads to a new aspect of the regulation of MazE concentration, which may decide about the life and death of the cell. Interactions of MazE with a dromedary antibody domain, cAbMaz1 (previously used as a crystallization aid), as well as with promoter DNA were studied using microcalorimetric and spectroscopic techniques. Unique features of cAbMaz1 enable a specific enthalpy-driven recognition of MazE and, thus, a significant stabilization of its dimeric native conformation. The MazE dimer and the MazE dimer-cAbMaz1 complex show very similar binding characteristics with promoter DNA, i.e. three binding sites with apparent affinities in micromolar range and highly exothermic binding accompanied by large negative entropy contributions. A working model for the MazE-DNA assembly is proposed on the basis of the structural and binding data. Both binding and stability studies lead to a picture of MazE solution structure that is significantly more unfolded than the structure observed in a crystal of the MazE-cAbMaz1 complex.  相似文献   

13.
Plant nitrite reductase (NiR) catalyzes the reduction of nitrite (NO(2)(-)) to ammonia, using reduced ferredoxin as the electron donor. NiR contains a [4Fe-4S] cluster and an Fe-siroheme, which is the nitrite binding site. In the enzyme's as-isolated form ([4Fe-4S](2+)/Fe(3+)), resonance Raman spectroscopy indicated that the siroheme is in the high-spin ferric hexacoordinated state with a weak sixth axial ligand. Kinetic and spectroscopic experiments showed that the reaction of NiR with NO(2)(-) results in an unexpectedly EPR-silent complex formed in a single step with a rate constant of 0.45 +/- 0.01 s(-)(1). This binding rate is slow compared to that expected from the NiR turnover rates reported in the literature, suggesting that binding of NO(2)(-) to the as-isolated form of NiR is not the predominant type of substrate binding during enzyme turnover. Resonance Raman spectroscopic characterization of this complex indicated that (i) the siroheme iron is low-spin hexacoordinated ferric, (ii) the ligand coordination is unusually heterogeneous, and (iii) the ligand is not nitric oxide, most likely NO(2)(-). The reaction of oxidized NiR with hydroxylamine (NH(2)OH), a putative intermediate, results in a ferrous siroheme-NO complex that is spectroscopically identical to the one observed during NiR turnover. Resonance Raman and absorption spectroscopy data show that the reaction of oxidized NiR ([4Fe-4S](2+)/Fe(3+)) with hydroxylamine is binding-limited, while the NH(2)OH conversion to nitric oxide is much faster.  相似文献   

14.
We present here the synthesis, crystal structure, electrochemical behavior, spectroscopic properties (FT-IR, UV-Vis and EPR), nuclease and in vitro antitumor activities against human myeloid leukemia cell line of the mononuclear copper complex [Cu(HPClNOL)(Cl)]Cl · MeOH (1). The reaction of the tetradentate ligand HPClNOL [1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol] and 1 equiv. of [Cu(OH2)6](Cl)2, in methanol, resulted in 1, which crystallizes as blue monoclinic crystals. The complex is pentacoordinated with a distorted square-pyramidal geometry. The activity of complex 1 toward plasmid DNA and THP-1 carcinogenic cells was investigated. Complex 1 promotes the cleavage of supercoiled DNA (pBlueScript KS+ DNA) to nicked circular and linear DNA forms. In addition to the three typical KS+ DNA forms, the cleavage resulted in a fourth band, which was visualized above of the nicked circular form. The results reveal that the cleavage mechanism is radical-independent. Furthermore, complex 1 is able to promote cell death of THP-1 cells by apoptosis, as confirmed by fluorescent microscopy, cell morphology and DNA degradation.  相似文献   

15.
The abundant blue hemolymph protein of the last instar larvae of the moth Cerura vinula was purified and characterized by protein-analytical, spectroscopic and electron microscopic methods. Amino acid sequences obtained from a large number of cleavage peptides revealed a high level of similarity of the blue protein with arylphorins from a number of other moth species. In particular, there is a high abundance of the aromatic amino acids tyrosine and phenylalanine amounting to about 19% of total amino acids and a low content of methionine (0.8%) in the Cerura protein. The mass of the native protein complex was studied by size-exclusion chromatography, analytical ultracentrifugation, dynamic light scattering and scanning transmission electron microscopy and found to be around 500 kDa. Denaturating gel electrophoresis and mass spectrometry suggested the presence of two proteins with masses of about 85 kDa. The native Cerura protein is, therefore, a hexameric complex of two different subunits of similar size, as is known for arylphorins. The protein was further characterized as a weakly acidic (pI ∼ 5.5) glycoprotein containing mannose, glucose and N-acetylglucosamine in an approximate ratio of 10:1:1. The structure proposed for the most abundant oligosaccharide of the Cerura arylphorin was the same as already identified in arylphorins from other moths. The intense blue colour of the Cerura protein is due to non-covalent association with a bilin of novel structure at an estimated protein subunit-to-ligand ratio of 3:1. Transmission electron microscopy of the biliprotein showed single particles of cylindrical shape measuring about 13 nm in diameter and 9 nm in height. A small fraction of particles of the same diameter but half the height was likely a trimeric arylphorin dissociation intermediate. Preliminary three-dimensional reconstruction based on averaged transmission electron microscopy projections of the individual particles revealed a double-trimeric structure for the hexameric Cerura biliprotein complex, suggesting it to be a dimer of trimers.  相似文献   

16.
17.
The synthesis, structure and spectroscopic properties on complexes with the formula [Cu(Lm)2] (1) and Cu(NO3)2(HLm)2 (2), where HLm = thiophene-2-carbaldehyde thiosemicarbazone, have been developed. The molecular structure of compound 1 consists of monomeric entities. The copper(II) ions exhibit distorted square-planar geometry with both bidentate thiosemicarbazone ligands placed in a centrosymmetric way. Metal to ligand pi-backdonation is proposed to explain several structural and spectroscopic features in these complexes. The EPR spectra of compound 1 show an orthorhombic g tensor indicating the presence of weak magnetic exchange interactions. The reaction of compound 1 with glutathione causes the reduction of the metal ion and the substitution of the thiosemicarbazone ligand by the thiol ligand. This mechanism seems to be related to the cytotoxicity of this complex against Friend Erithroleukemia cells (FLC) and melanome B16F10 cells.  相似文献   

18.
Aspyrone (1) was isolated from a culture filtrate of Aspergillus melleus, and the structure was determined by a comparison of spectroscopic data with those of an authentic sample. 1 showed nematicidal activity toward Pratylenchus penetrans by 80.8% at a concentration of 300 mg/liter.  相似文献   

19.
In addition to a known spirostanol glycoside, balanitin-3, and a new sapogenol, 6-methyldiosgenin, a new furostanol saponin, balanitoside has been isolated from the fruits (mesocarp) of Balanites aegyptiaca. The structure of the glycoside has been determined as 26-O-beta-D-glucopyranosyl-3 beta, 22,26-trihydroxy-furost-5-ene 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D- glucopyranosyl-(1-->4)-beta-D-glucopyranoside, on the basis of spectroscopic and chemical evidence.  相似文献   

20.
《MABS-AUSTIN》2013,5(8):1291-1300
ABSTRACT

Protein-based biotherapeutics are produced in engineered cells through complex processes and may contain a wide variety of variants and post-translational modifications that must be monitored or controlled to ensure product quality. Recently, a low level (~1–5%) impurity was observed in a number of proteins derived from stably transfected Chinese hamster ovary (CHO) cells using mass spectrometry. These molecules include antibodies and Fc fusion proteins where Fc is on the C-terminus of the construct. By liquid chromatography-mass spectrometry (LC-MS), the impurity was found to be ~1177 Da larger than the expected mass. After tryptic digestion and analysis by LC-MS/MS, the impurity was localized to the C-terminus of Fc in the form of an Fc sequence extension. Targeted higher-energy collision dissociation was performed using various normalized collision energies (NCE) on two charge states of the extended peptide, resulting in nearly complete fragment ion coverage. The amino acid sequence, SLSLSPEAEAASASELFQ, obtained by the de novo sequencing effort matches a portion of the vector sequence used in the transfection of the CHO cells, specifically in the promoter region of the selection cassette downstream of the protein coding sequence. The modification was the result of an unexpected splicing event, caused by the resemblance of the commonly used GGU codon of the C-terminal glycine to a consensus splicing donor. Three alternative codons for glycine were tested to alleviate the modification, and all were found to completely eliminate the undesirable C-terminal extension, thus improving product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号