首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic diversity generally underpins population resilience and persistence. Reductions in population size and absence of gene flow can lead to reductions in genetic diversity, reproductive fitness, and a limited ability to adapt to environmental change increasing the risk of extinction. Island populations are typically small and isolated, and as a result, inbreeding and reduced genetic diversity elevate their extinction risk. Two island populations of the platypus, Ornithorhynchus anatinus, exist; a naturally occurring population on King Island in Bass Strait and a recently introduced population on Kangaroo Island off the coast of South Australia. Here we assessed the genetic diversity within these two island populations and contrasted these patterns with genetic diversity estimates in areas from which the populations are likely to have been founded. On Kangaroo Island, we also modeled live capture data to determine estimates of population size. Levels of genetic diversity in King Island platypuses are perilously low, with eight of 13 microsatellite loci fixed, likely reflecting their small population size and prolonged isolation. Estimates of heterozygosity detected by microsatellites (H(E)= 0.032) are among the lowest level of genetic diversity recorded by this method in a naturally outbreeding vertebrate population. In contrast, estimates of genetic diversity on Kangaroo Island are somewhat higher. However, estimates of small population size and the limited founders combined with genetic isolation are likely to lead to further losses of genetic diversity through time for the Kangaroo Island platypus population. Implications for the future of these and similarly isolated or genetically depauperate populations are discussed.  相似文献   

2.
Gillespie JH 《Gene》2000,261(1):11-18
Selective substitutions at one locus induce stochastic dynamics at a linked neutral locus that resemble genetic drift even when the population size is infinite. This new stochastic force, which is called genetic draft, causes genetic variation at the neutral locus to decrease with population size and the rate of deleterious substitution to increase with population size. The fact that heterozygosities in natural populations are only weakly dependent on population size suggests that genetic draft may be a much more important stochastic force than genetic drift in natural populations. Some of the mathematical properties of genetic draft are explored.  相似文献   

3.
Genetic diversity is essential for persistence of animal populations over both the short- and long-term. Previous studies suggest that genetic diversity may decrease with population decline due to genetic drift or inbreeding of small populations. For oscillating populations, there are some studies on the relationship between population density and genetic diversity, but these studies were based on short-term observation or in low-density phases. Evidence from rapidly expanding populations is lacking. In this study, genetic diversity of a rapidly expanding population of the Greater long-tailed hamsters during 1984–1990, in the Raoyang County of the North China Plain was studied using DNA microsatellite markers. Results show that genetic diversity was positively correlated with population density (as measured by % trap success), and the increase in population density was correlated with a decrease of genetic differentiation between the sub-population A and B. The genetic diversity tended to be higher in spring than in autumn. Variation in population density and genetic diversity are consistent between sub-population A and B. Such results suggest that dispersal is density- and season-dependent in a rapidly expanding population of the Greater long-tailed hamster. For typically solitary species, increasing population density can increase intra-specific attack, which is a driving force for dispersal. This situation is counterbalanced by decreasing population density caused by genetic drift or inbreeding as the result of small population size. Season is a major factor influencing population density and genetic diversity. Meanwhile, roads, used to be considered as geographical isolation, have less effect on genetic differentiation in a rapidly expanding population. Evidences suggest that gene flow (Nm) is positively correlated with population density, and it is significant higher in spring than that in autumn.  相似文献   

4.
The genetic diversity of a local population of the Manchurian pheasant Phasianus colchicus pallasi was studied using RAPD-PCR. Based on the DNA patterns obtained in PCR with five arbitrary decanucleotide primers, we assessed genetic polymorphism of this population, estimated genetic distances between individuals, and constructed an NJ phylogenetic tree, and an UPGMA dendrogram of genetic similarity. The population was shown to exhibit high average genetic polymorphism (P = 79.4%) and genetic distances (D = 0.267). Possible reasons for the high genetic diversity of this local population are discussed.  相似文献   

5.
Modeling quantitative trait Loci and interpretation of models   总被引:8,自引:0,他引:8       下载免费PDF全文
Zeng ZB  Wang T  Zou W 《Genetics》2005,169(3):1711-1725
A quantitative genetic model relates the genotypic value of an individual to the alleles at the loci that contribute to the variation in a population in terms of additive, dominance, and epistatic effects. This partition of genetic effects is related to the partition of genetic variance. A number of models have been proposed to describe this relationship: some are based on the orthogonal partition of genetic variance in an equilibrium population. We compare a few representative models and discuss their utility and potential problems for analyzing quantitative trait loci (QTL) in a segregating population. An orthogonal model implies that estimates of the genetic effects are consistent in a full or reduced model in an equilibrium population and are directly related to the partition of the genetic variance in the population. Linkage disequilibrium does not affect the estimation of genetic effects in a full model, but would in a reduced model. Certainly linkage disequilibrium would complicate the detection of QTL and epistasis. Using different models does not influence the detection of QTL and epistasis. However, it does influence the estimation and interpretation of genetic effects.  相似文献   

6.
Genetic Diversity and the Survival of Populations   总被引:7,自引:0,他引:7  
Abstract: In this comprehensive review, a range of factors is considered that may influence the significance of genetic diversity for the survival of a population. Genetic variation is essential for the adaptability of a population in which quantitatively inherited, fitness-related traits are crucial. Therefore, the relationship between genetic diversity and fitness should be studied in order to make predictions on the importance of genetic diversity for a specific population. The level of genetic diversity found in a population highly depends on the mating system, the evolutionary history of a species and the population history (the latter is usually unknown), and on the level of environmental heterogeneity. An accurate estimation of fitness remains complex, despite the availability of a range of direct and indirect fitness parameters. There is no general relationship between genetic diversity and various fitness components. However, if a lower level of heterozygosity represents an increased level of inbreeding, a reduction in fitness can be expected. Molecular markers can be used to study adaptability or fitness, provided that they represent a quantitative trait locus (QTL) or are themselves functional genes involved in these processes. Next to a genetic response of a population to environmental change, phenotypic plasticity in a genotype can affect fitness. The relative importance of plasticity to genetic diversity depends on the species and population under study and on the environmental conditions. The possibilities for application of current knowledge on genetic diversity and population survival for the management of natural populations are discussed.  相似文献   

7.
The concepts of “founder equivalent” and “founder genome equivalent” are introduced to facilitate analysis of the founding stocks of captive or other populations for which pedigrees are available. The founder equivalents of a population are the number of equally contributing founders that would be expected to produce the same genetic diversity as in the population under study. Unequal genetic contributions by founders decrease the founder equivalents, portend greater inbreeding in future generations than would be necessary, and reflect a greater loss of the genetic diversity initially present in the founders. The number of founder genome equivalents of a population is that number of equally contributing founders with no random loss of founder alleles in descendants that would be expected to produce the same genetic diversity as in the population under study. The number of founder genome equivalents is approximately that number of wild-caught animals that would be needed to obtain the same amount of genetic diversity as is in the descendant captive population. Founder equivalents and founder genome equivalents allow comparison of the genetic merits of adding new wild-caught stock vs. further equalizing founder representations in a captive population.  相似文献   

8.
M A Millar  D J Coates  M Byrne 《Heredity》2013,111(5):437-444
Historically rare plant species with disjunct population distributions and small population sizes might be expected to show significant genetic structure and low levels of genetic diversity because of the effects of inbreeding and genetic drift. Across the globe, terrestrial inselbergs are habitat for rich, often rare and endemic flora and are valuable systems for investigating evolutionary processes that shape patterns of genetic structure and levels of genetic diversity at the landscape scale. We assessed genetic structure and levels of genetic diversity across the range of the historically rare inselberg endemic Acacia woodmaniorum. Phylogeographic and genetic structure indicates that connectivity is not sufficient to produce a panmictic population across the limited geographic range of the species. However, historical levels of gene flow are sufficient to maintain a high degree of adaptive connectivity across the landscape. Genetic diversity indicates gene flow is sufficient to largely counteract any negative genetic effects of inbreeding and random genetic drift in even the most disjunct or smallest populations. Phylogeographic and genetic structure, a signal of isolation by distance and a lack of evidence of recent genetic bottlenecks suggest long-term stability of contemporary population distributions and population sizes. There is some evidence that genetic connectivity among disjunct outcrops may be facilitated by the occasional long distance dispersal of Acacia polyads carried by insect pollinators moved by prevailing winds.  相似文献   

9.
林木群体遗传多样性和多位点遗传结构   总被引:7,自引:0,他引:7  
本文评述了群体同工酶基因位点遗传结构研究中的主要度量方法及其在森林树种中的应用概况。群体遗传结构可由单位点和多位点两类参数度量。 文中对这两类度量及其关系分别进行了讨论。阐明了多位点遗传结构的信息对林木改良和资源保存策略的重要意义。  相似文献   

10.
Whole-exome or gene targeted resequencing in hundreds to thousands of individuals has shown that the majority of genetic variants are at low frequency in human populations. Rare variants are enriched for functional mutations and are expected to explain an important fraction of the genetic etiology of human disease, therefore having a potential medical interest. In this work, we analyze the whole-exome sequences of French-Canadian individuals, a founder population with a unique demographic history that includes an original population bottleneck less than 20 generations ago, followed by a demographic explosion, and the whole exomes of French individuals sampled from France. We show that in less than 20 generations of genetic isolation from the French population, the genetic pool of French-Canadians shows reduced levels of diversity, higher homozygosity, and an excess of rare variants with low variant sharing with Europeans. Furthermore, the French-Canadian population contains a larger proportion of putatively damaging functional variants, which could partially explain the increased incidence of genetic disease in the province. Our results highlight the impact of population demography on genetic fitness and the contribution of rare variants to the human genetic variation landscape, emphasizing the need for deep cataloguing of genetic variants by resequencing worldwide human populations in order to truly assess disease risk.  相似文献   

11.
M T J Hague  E J Routman 《Heredity》2016,116(1):92-98
Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations.  相似文献   

12.
本文针对濒危植物居群的遗传多样性、生殖适合度、基因流、近交和远交衰退等遗传学问题在居群恢复过程中的应用进行了探讨。濒危植物居群的回归重建,既面临遗传多样性的迅速丧失、近交衰退等遗传风险,还因回归引种地存在较多近缘种而带来远交衰退的风险,最终导致遗传适应性降低,生境适应性变窄,繁殖和竞争能力减弱。为提高濒危物种保护的质量和效率,在构建回归居群时,应分批次从同一来源居群的不同母株采集材料,确保种源的遗传纯正性和遗传组成的多样性,还应使回归居群尽可能远离近缘广布种。另外,还需要对回归种群进行持续的监测和管理才能保证回归引种的成功。  相似文献   

13.
The genetic diversity and population structure of a population of African lions in Hwange National Park, Zimbabwe, was studied using 17 microsatellite loci. Spatial genetic analysis using Bayesian methods suggested a weak genetic structure within the population and high levels of gene flow across the study area. We were able to identify a few individuals with aberrant or admixed ancestry, which we interpreted as either immigrants or as descendants thereof. This, together with relatively high genetic diversity, suggests that immigrants from beyond the study area have influenced the genetic structure within the park. We suggest that the levels of genetic diversity and the observed weak structure are indicative of the large and viable Okavango-Hwange population of which our study population is a part. Genetic patterns can also be attributed to still existing high levels of habitat connectivity between protected areas. Given expected increases in human populations and anthropogenic impacts, efforts to identify and maintain existing movement corridors between regional lion populations will be important in retaining the high genetic diversity status of this population. Our results show that understanding existing levels of genetic diversity and genetic connectivity has implications, not only for this lion population, but also for managing large wild populations of carnivores.  相似文献   

14.
Dispersal is a process that increases genetic diversity and genetic connectivity of populations. We studied the turnover rate of breeding adults and genetic population structure to estimate dispersal in Peregrine Falcons in Finland. We used relatedness estimates among Finnish Peregrine Falcons over a 5‐year period, genotyping over 500 nestlings with 10 microsatellite loci to reveal the rate of turnover. Our results reveal a high turnover rate (21.7%) that does not seem to be correlated with the breeding success of the previous year. The extent of population genetic structure and diversity, and possible signs of the population crash during the 1970s, was assessed with a reduced dataset, excluding relatives. We found genetic diversity to be similar to previously studied falcon populations (expected heterozygosity of 0.581) and no population genetic structuring among our sampled populations. We did not find a genetic imprint of the past population bottleneck that the Finnish Peregrine population experienced. We conclude that high dispersal rates are likely to have contributed to maintaining genetic diversity across the landscape, by mixing individuals within the species’ distribution in Finland and thus preventing genetic structuring and negative effects associated with the population decline in the 1970s.  相似文献   

15.
Many key species in northern ecosystems are characterised by high‐amplitude cyclic population demography. In 1924, Charles Elton described the ecology and evolution of cyclic populations in a classic paper and, since then, a major focus has been the underlying causes of population cycles. Elton hypothesised that fluctuations reduced population genetic variation and influenced the direction of selection pressures. In concordance with Elton, present theories concern the direct consequences of population cycles for genetic structure due to the processes of genetic drift and selection, but also include feedback models of genetic composition on population dynamics. Most of these theories gained mathematical support during the 1970s and onwards, but due to methodological drawbacks, difficulties in long‐term sampling and a complex interplay between microevolutionary processes, clear empirical data allowing the testing of these predictions are still scarce. Current genetic tools allow for estimates of genetic variation and identification of adaptive genomic regions, making this an ideal time to revisit this subject. Herein, we attempt to contribute towards a consensus regarding the enigma described by Elton almost 90 years ago. We present nine predictions covering the direct and genetic feedback consequences of population cycles on genetic variation and population structure, and review the empirical evidence. Generally, empirical support for the predictions was low and scattered, with obvious gaps in the understanding of basic population processes. We conclude that genetic variation in northern cyclic populations generally is high and that the geographic distribution and amount of diversity are usually suggested to be determined by various forms of context‐ and density‐dependent dispersal exceeding the impact of genetic drift. Furthermore, we found few clear signatures of selection determining genetic composition in cyclic populations. Dispersal is assumed to have a strong impact on genetic structuring and we suggest that the signatures of other microevolutionary processes such as genetic drift and selection are weaker and have been over‐shadowed by density‐dependent dispersal. We emphasise that basic biological and demographical questions still need to be answered and stress the importance of extensive sampling, appropriate choice of tools and the value of standardised protocols.  相似文献   

16.
Genetic rescue can be a successful way to restore species genetic diversity, but it can also lead to outbreeding depression (decreases in hybrid fitness) if attempted in incompatible populations. Thus, population genetic profiles and demographic history are needed to evaluate the feasibility of translocation. We used population genetic analyses and Approximate Bayesian Computation (ABC) to assess genetic rescue as an option for two populations of the yellow-shouldered blackbird (Agelaius xanthomus), an endangered Puerto Rico endemic. The candidate recipient population, a managed population in Pitahaya (southwestern Puerto Rico), had been characterized previously for its mating system and population genetics. Here, we used nine microsatellite loci to measure the genetic diversity of a candidate source population, a subspecies (A. x. monensis) on Mona Island, 66 km west of Puerto Rico. We compared genetic diversity and inferred historical and contemporary gene flow between the two populations. We found clear population structure and no migration between populations, as well as evidence that the Mona population descended from the Pitahaya population approximately 95 generations ago. Despite the historical gene flow, the degree of contemporary genetic and environmental divergence means the Mona population may not be suitable for immediate use as a source population. We recommend (a) further investigating whether the observed population structure is due to adaptive or neutral forces, (b) testing the Mona population for behavioral plasticity in different environments, and (c) evaluating other source populations in addition to the Mona population for genetic rescue.  相似文献   

17.
H W Deng 《Genetics》2001,159(3):1319-1323
Association studies using random population samples are increasingly being applied in the identification and inference of genetic effects of genes underlying complex traits. It is well recognized that population admixture may yield false-positive identification of genetic effects for complex traits. However, it is less well appreciated that population admixture can appear to mask, change, or reverse true genetic effects for genes underlying complex traits. By employing a simple population genetics model, we explore the effects and the conditions of population admixture in masking, changing, or even reversing true genetic effects of genes underlying complex traits.  相似文献   

18.
Eldon B  Wakeley J 《Genetics》2006,172(4):2621-2633
We report a complex set of scaling relationships between mutation and reproduction in a simple model of a population. These follow from a consideration of patterns of genetic diversity in a sample of DNA sequences. Five different possible limit processes, each with a different scaled mutation parameter, can be used to describe genetic diversity in a large population. Only one of these corresponds to the usual population genetic model, and the others make drastically different predictions about genetic diversity. The complexity arises because individuals can potentially have very many offspring. To the extent that this occurs in a given species, our results imply that inferences from genetic data made under the usual assumptions are likely to be wrong. Our results also uncover a fundamental difference between populations in which generations are overlapping and those in which generations are discrete. We choose one of the five limit processes that appears to be appropriate for some marine organisms and use a sample of genetic data from a population of Pacific oysters to infer the parameters of the model. The data suggest the presence of rare reproduction events in which approximately 8% of the population is replaced by the offspring of a single individual.  相似文献   

19.
The genetic diversity of a local population of the Manchurian pheasant Phasianus colchicus pallasi was studied using RAPD–PCR. Based on the DNA patterns obtained in PCR with five arbitrary decanucleotide primers, we assessed genetic polymorphism of this population, estimated genetic distances between individuals, and constructed an NJ phylogenetic tree, and an UPGMA dendrogram of genetic similarity. The population was shown to exhibit high average genetic polymorphism (P = 79.4%) and genetic distances (D = 0.267). Possible reasons for the high genetic diversity of this local population are discussed.  相似文献   

20.
The selection of an appropriate source population may be crucial to the long-term success of reintroduction programs. Appropriate source populations often are those that originate from the same genetic lineage as native populations. However, source populations also should exhibit high levels of genetic diversity to maximize their capacity to adapt to variable environmental conditions. Finally, it is preferable if source populations are genetically representative of historical lineages with little or no contamination from non-native or domesticated stocks. Here, we use nuclear (microsatellite) and cytoplasmic (mitochondrial control region) markers to assess the genetic suitability of a potential source population inhabiting the White River in Indiana: the last extant lake sturgeon population in the Ohio River drainage. The White River population exhibited slightly lower levels of genetic diversity than other lake sturgeon populations. However, the population’s two private microsatellite alleles and three private haplotypes suggest a unique evolutionary trajectory. Population assignment tests revealed only two putative migrants in the White River, indicating the population has almost completely maintained its genetic integrity. Additionally, pairwise F ST estimates indicated significant levels of genetic divergence between the White River and seven additional lake sturgeon populations, suggesting its genetic distinctiveness. These data indicate that the White River population may be the most suitable source population for future lake sturgeon reintroductions throughout the Ohio River drainage. Furthermore, the White River population appears to be a reservoir of unique genetic information and reintroduction may be a necessary strategy to ensure the persistence of this important genetic lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号