首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma membrane is most likely the major target for sensing of aluminium (Al), leading to inhibition of plant root-growth. As a result of high external Al, alterations in plasma membrane composition may be expected in order to maintain its properties. As sphingolipids are characteristic components of this membrane, their involvement in membrane adjustment to increased Al concentrations was investigated. Heterologous expression of a stereounselective long-chain base (LCB) (8E/Z)-desaturase from Arabidopsis thaliana, Brassica napus and Helianthus annuus in Saccharomyces cerevisiae improved the Al resistance of the transgenic yeast cells. This encouraged us to investigate whether Al affects the LCB composition, and whether genetic engineering of the LCB profile modifies the Al resistance of the Al-sensitive plant species maize (Zea mays, L.). Constitutive expression of the LCB (8E/Z)-desaturase from Arabidopsis thaliana in maize roots led to an 8- to 10-fold increase in (8E)-4-hydroxysphing-8-enine in total roots. Less marked but similar changes were observed in 3 mm root apices. Al treatment of the Al-sensitive maize cv Lixis resulted in a significant increase in the proportion of (8Z)-LCB and in the content of total LCBs in root tips, which was not observed in the Al-resistant cv ATP-Y. When root tips of transgenic plants were exposed to Al, only minor changes of both (8Z)- and (8E)-unsaturated LCBs as well as of the total LCB were observed. Al treatment of the wild type parental line H99 decreased the (8Z)-unsaturated LCBs and the total LCB content. Based on Al-induced callose production, a marker for Al sensitivity, the parental line H99 was as Al-resistant as cv ATP-Y, whereas the transgenic line became as sensitive as cv Lixis. Taken together, these data suggest that, in particular, the loss of the ability to down-regulate the proportion of (8Z)-unsaturated LCBs may be related to increased Al sensitivity.  相似文献   

2.
Cell biology and genetics of root hair formation inArabidopsis thaliana   总被引:4,自引:0,他引:4  
Ryan E  Steer M  Dolan L 《Protoplasma》2001,215(1-4):140-149
Summary In this review we integrate the information available on the cell biology of root hair formation with recent findings from the analysis of root hair mutants ofArabidopsis thaliana. The mature Arabidopsis root epidermis consists of root-hair-producing cells and non-root-hair-producing cells. Root hair growth begins with a swelling of the outer epidermal wall. It has been postulated that this is due to a pH-mediated localised cell wall loosening. From the bulge a single root hair emerges which grows by tip growth. The root hair tip consists of a vesicle-rich zone and an organelle-rich subapical zone. The vesicles supply new plasma membrane and cell wall material for elongation. The cytoskeleton and its associated regulatory proteins such as profilin and spectrin are proposed to be involved in the targeting of vesicles. Ca2+ influxes and gradients are present in hair tips, but their function is still unclear. Mutants have been isolated with lesions in various parts of the root hair developmental pathway from bulge identity and initiation, to control of tip diameter and extent and polarity of elongation.Abbreviations [Ca2+]c cytosolic calcium concentration - MT microtubule - PM plasma membrane - VRZ vesicle-rich zone - WT wild type Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

3.
The magnitude and spatial localization of Ca2+, K+ and H+ fluxes in growing and non-growing Limnobium stoloniferum root hairs was determined using non-invasive, ion-selective vibrating microelectrodes. Both the spatial pattern and magnitude of the ionic flux was dependent on the particular ion in question. Both H+ and Ca2+ influx was localized almost exclusively to the tips of growing root hairs, suggesting that these fluxes may be involved in directing growth. Influx of K+ showed no distinct localization and uptake appeared uniform along the length of the root hair. Competitive inhibition of Ca2+ influx using a range of Mg+ concentrations indicated that the magnitude of the Ca2+ flux entering the root hair tip did not determine growth rate; however, the presence of Ca2+ on the external face of the membrane was implicit for root hair integrity. Aluminum proved to be a potent inhibitor of root hair growth. At an exogenous Al concentration of 20 M a complete blockage of Ca2+ influx into root hair tips was observed, suggesting that Al blockage of Ca2+ influx could be involved in Al toxicity. However, at a lower Al concentration (2 M), Ca2+ fluxes were unaffected while inhibition of growth was still observed along with a distinct swelling of the root hair tip. The swelling at the root hair tips was identical in appearance to that seen in the presence of microtubule inhibitors, suggesting that Al could influence a number of different sites at the plasma-membrane surface and within the cell. The possible role(s) of Ca2+ and H+ fluxes in directing tip growth are discussed.  相似文献   

4.
Aluminium (Al) toxicity is a global agricultural problem that occurs in acid soil environments and severely limits root growth and crop productivity. The isolation and characterization of a gene, ALS3, which is absolutely required by Arabidopsis seedlings for growth in an Al-toxic environment was reported previously. Since the als3-1 loss-of-function mutant has extreme root growth inhibition even in the presence of very low levels of Al, it was an excellent candidate for using a mutagenesis approach to identify suppressor mutations that would increase either Al resistance or tolerance in Arabidopsis roots. EMS-mutagenized als3-1 seedlings were screened for mutants that could sustain root growth in an Al-containing environment that is highly toxic to als3-1 but not Col-0 wt. This approach resulted in identification of 12 strong suppressor mutants that reversed the als3-1 phenotype and grew as well or better than Col-0 wt in the presence of high levels of Al. Subsequent analysis of three representative suppressor mutants revealed that the phenotype of each probably arises from dominant gain-of-function mutations at the same locus. Detailed analysis of one of these, alt1-1 (Al tolerant), suggests that this mutation positively impacts Al resistance in a manner dependent on pH adjustment rather than enhanced Al exclusion. Identification of these suppressor mutations, should not only further elucidate the biochemical and molecular mechanisms underlying Al toxicity and tolerance but also will develop a collection of mutations that may be useful for engineering crop plants that can grow and thrive in Al-toxic environments.  相似文献   

5.
The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental process in wild-type Arabidopsis, ethylene-insensitive mutant ein2-1, and auxin influx mutants aux1-7, aux1-22, and double mutant aux1-7 ein2. Beta-glucuronidase (GUS) expression analysis in the BA-GUS transgenic line, consisting of auxin-responsive domains of PS-IAA4/5 promoter and GUS reporter, revealed that 1-NOA and CSI act as auxin uptake inhibitors in Arabidopsis roots. The frequency of root hairs in ein2-1 roots was greatly reduced in the presence of CSI or 1-NOA, suggesting that endogenous auxin plays a critical role for the root hair initiation in the absence of an ethylene response. All of these mutants showed a reduction in root hair length, however, the root hair length could be restored with a variable concentration of 1-naphthaleneacetic acid (NAA). NAA (10 nM) restored the root hair length of aux1 mutants to wild-type level, whereas 100 nM NAA was needed for ein2-1 and aux1-7 ein2 mutants. Our results suggest that insensitivity in ethylene response affects the auxin-driven root hair elongation. CSI exhibited a similar effect to 1-NOA, reducing root hair growth and the number of root hair-bearing cells in wild-type and ein2-1 roots, while stimulating these traits in aux1-7and aux1-7ein2 roots, confirming that CSI is a unique modulator of AUX1.  相似文献   

6.
Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed membrane dynamics after labeling with RabA4b, a marker for polarized membrane trafficking in root hairs. This revealed stochastic loss and recovery of the RabA4b compartment in the tips of growing root hairs, consistent with a role for the RHD4 protein in regulation of polarized membrane trafficking in these cells. The wild-type RHD4 gene was identified by map-based cloning and was found to encode a Sac1p-like phosphoinositide phosphatase. RHD4 displayed a preference for phosphatidylinositol-4-phosphate [PI(4)P] in vitro, and rhd4-1 roots accumulated higher levels of PI(4)P in vivo. In wild-type root hairs, PI(4)P accumulated primarily in a tip-localized plasma membrane domain, but in rhd4-1 mutants, significant levels of PI(4)P were detected associated with internal membranes. A fluorescent RHD4 fusion protein localized to membranes at the tips of growing root hairs. We propose that RHD4 is selectively recruited to RabA4b-labeled membranes that are involved in polarized expansion of root hair cells and that, in conjunction with the phosphoinositide kinase PI-4Kbeta1, RHD4 regulates the accumulation of PI(4)P on membrane compartments at the tips of growing root hairs.  相似文献   

7.
The Arabidopsis thaliana root hair is used as a model for studying tip growth in plants. We review recent advances, made using physiological and genetic approaches, which give rise to different, yet compatible, current views of the establishment and maintenance of tip growth in epidermal cells. For example, an active calcium influx channel localized at the tip of Arabidopsis root hairs has been identified by patch-clamp measurements. Actin has been visualized in vivo in Arabidopsis root hairs by using a green-fluorescent-protein-talin reporter and shown to form a dense mesh in the apex of the growing tip. The kojak gene, which encodes a protein similar to the catalytic subunit of cellulose synthase, is needed in the first stages of hair growth. A role for LRX1, a leucine-rich repeat extensin, in determining the morphology of the cell wall of root hairs has been established using reverse genetics. The new information can be integrated into a general and more advanced view of how these specialized plant cells grow.  相似文献   

8.
The role of the Lotus japonicus LjSym4 gene during the symbiotic interaction with Mesorhizobium loti and arbuscular mycorrhizal (AM) fungi was analyzed with two mutant alleles conferring phenotypes of different strength. Ljsym4-1 and Ljsym4-2 mutants do not form nodules with M. loti. Normal root hair curling and infection threads are not observed, while a nodC-dependent deformation of root hair tips indicates that nodulation factors are still perceived by Ljsym4 mutants. Fungal infection attempts on the mutants generally abort within the epidermis, but Ljsym4-1 mutants allow rare, successful, infection events, leading to delayed arbuscule formation. On roots of mutants homozygous for the Ljsym4-2 allele, arbuscule formation was never observed upon inoculation with either of the two AM fungi, Glomus intraradices or Gigaspora margarita. The strategy of epidermal penetration by G. margarita was identical for Ljsym4-2 mutants and the parental line, with appressoria, hyphae growing between two epidermal cells, penetration of epidermal cells through their anticlinal wall. These observations define a novel, genetically controlled step in AM colonization. Although rhizobia penetrate the tip of root hairs and AM fungi access an entry site near the base of epidermal cells, the LjSym4 gene is necessary for the appropriate response of this cell type to both microsymbionts. We propose that LjSym4 is required for the initiation or coordinated expression of the host plant cell's accommodation program, allowing the passage of both microsymbionts through the epidermis layer.  相似文献   

9.
Cho M  Lee SH  Cho HT 《The Plant cell》2007,19(12):3930-3943
ATP binding cassette (ABC) transporters transport diverse substrates across membranes in various organisms. However, plant ABC transporters have only been scantily characterized. By taking advantage of the auxin-sensitive Arabidopsis thaliana root hair cell and tobacco (Nicotiana tabacum) suspension cell systems, we show here that Arabidopsis P-glycoprotein4 (PGP4) displays auxin efflux activity in plant cells. Root hair cell-specific overexpression of PGP4 (PGP4ox) and known auxin efflux transporters, such as PGP1, PGP19, and PIN-FORMEDs, decreased root hair elongation, whereas overexpression of the influx transporter AUXIN-RESISTANT1 enhanced root hair length. PGP4ox-mediated root hair shortening was rescued by the application of auxin or an auxin efflux inhibitor. These results indicate that the increased auxin efflux activity conferred by PGP4 reduces auxin levels in the root hair cell and consequently inhibits root hair elongation. PGP4ox in tobacco suspension cells also increased auxin efflux. PGP4 proteins were targeted to the plasma membrane of Arabidopsis root hair cells and tobacco cells without any clear subcellular polarity. Brefeldin A partially interfered with the trafficking of PGP4 reversibly, and this was rescued by pretreatment with auxin. These results suggest that PGP4 is an auxin efflux transporter in plants and that its trafficking to the plasma membrane involves both BFA-sensitive and -insensitive pathways.  相似文献   

10.
11.
Previously, we identified Arabidopsis thaliana mutant rhd1-4 as hypersusceptible to the sugar beet cyst nematode Heterodera schachtii. We assessed rhd1-4 as well as two other rhd1 alleles and found that each exhibited, in addition to H. schachtii hypersusceptibility, decreased root length, increased root hair length and density, and deformation of the root epidermal cells compared with wild-type A. thaliana ecotype Columbia (Col-0). Treatment of rhd1-4 and Col-0 with the ethylene inhibitors 2-aminoethoxyvinylglycine and silver nitrate and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid suggests that the rhd1-4 hypersusceptibility and root morphology phenotypes are the result of an increased ethylene response. Assessment of known ethylene mutants further support the finding that ethylene plays a role in mediating A. thaliana susceptibility to H. schachtii because mutants that overproduce ethylene (eto1-1, eto2, and eto3) are hypersusceptible to H. schachtii and mutants that are ethylene-insensitive (etr1-1, ein2-1, ein3-1, eir1-1, and axr2) are less susceptible to H. schachtii. Because the ethylene mutants tested show altered susceptibility and altered root hair density and length, a discrimination between the effects of altered ethylene signal transduction and root hair density on susceptibility was accomplished by analyzing the ttg and gl2 mutants, which produce ectopic root hairs that result in greatly increased root hair densities while maintaining normal ethylene signal transduction. The observed normal susceptibilities to H. schachtii of ttg and g12 indicate that increased root hair density, per se, does not cause hypersusceptibility. Furthermore, the results of nematode attraction assays suggest that the hypersusceptibility of rhd1-4 and the ethylene-overproducing mutant eto3 may be the result of increased attraction of H. schachtii-infective juveniles to root exudates of these plants. Our findings indicate that rhd1 is altered in its ethylene response and that ethylene signal transduction positively influences plant susceptibility to cyst nematodes.  相似文献   

12.
Spatial and temporal control of cell wall deposition plays a unique and critical role during growth and development in plants. To characterize membrane trafficking pathways involved in these processes, we have examined the function of a plant Rab GTPase, RabA4b, during polarized expansion in developing root hair cells. Whereas a small fraction of RabA4b cofractionated with Golgi membrane marker proteins, the majority of this protein labeled a unique membrane compartment that did not cofractionate with the previously characterized trans-Golgi network syntaxin proteins SYP41 and SYP51. An enhanced yellow fluorescent protein (EYFP)-RabA4b fusion protein specifically localizes to the tips of growing root hair cells in Arabidopsis thaliana. Tip-localized EYFP-RabA4b disappears in mature root hair cells that have stopped expanding, and polar localization of the EYFP-RabA4b is disrupted by latrunculin B treatment. Loss of tip localization of EYFP-RabA4b was correlated with inhibition of expansion; upon washout of the inhibitor, root hair expansion recovered only after tip localization of the EYFP-RabA4b compartments was reestablished. Furthermore, in mutants with defective root hair morphology, EYFP-RabA4b was improperly localized or was absent from the tips of root hair cells. We propose that RabA4b regulates membrane trafficking through a compartment involved in the polarized secretion of cell wall components in plant cells.  相似文献   

13.
A member of the cellulose synthase-like (subfamily D) gene family of Arabidopsis, AtCSLD3, has been identified by T-DNA tagging. The analysis of the corresponding mutant, csld3-1, showed that the AtCSLD3 gene plays a role in root hair growth in plants. Root hairs grow in phases: First a bulge is formed and then the root hair elongates by polarized growth, the so-called "tip growth." In the mutant, root hairs were initiated at the correct position and grew into a bulge, but their elongation was severely reduced. The tips of the csld3-1 root hairs easily leaked cytoplasm, indicating that the tensile strength of the cell wall had changed at the site of the tip. Based on the mutant phenotype and the functional conservation between CSLD3 and the genuine cellulose synthase proteins, we hypothesized that the CSLD3 protein is essential for the synthesis of polymers for the fast-growing primary cell wall at the root hair tip. The distinct mutant phenotype and the ubiquitous expression pattern indicate that the CSLD3 gene product is only limiting at the zone of the root hair tip, suggesting particular physical properties of the cell wall at this specific site of the root hair cell.  相似文献   

14.
In Arabidopsis root tips cultured in medium containing sufficient nutrients and the membrane-permeable protease inhibitor E-64d, parts of the cytoplasm accumulated in the vacuoles of the cells from the meristematic zone to the elongation zone. Also in barley root tips treated with E-64, parts of the cytoplasm accumulated in autolysosomes and pre-existing central vacuoles. These results suggest that vacuolar and/or lysosomal autophagy occurs constitutively in these regions of cells. 3-Methyladenine, an inhibitor of autophagy, inhibited the accumulation of such inclusions in Arabidopsis root tip cells. Such inclusions were also not observed in root tips prepared from Arabidopsis T-DNA mutants in which AtATG2 or AtATG5, an Arabidopsis homolog of yeast ATG genes essential for autophagy, is disrupted. In contrast, an atatg9 mutant, in which another homolog of ATG is disrupted, accumulated a significant number of vacuolar inclusions in the presence of E-64d. These results suggest that both AtAtg2 and AtAtg5 proteins are essential for autophagy whereas AtAtg9 protein contributes to, but is not essential for, autophagy in Arabidopsis root tip cells. Autophagy that is sensitive to 3-methyladenine and dependent on Atg proteins constitutively occurs in the root tip cells of Arabidopsis.  相似文献   

15.
Roles of phosphatidylinositol 3-kinase in root hair growth   总被引:2,自引:1,他引:1  
Lee Y  Bak G  Choi Y  Chuang WI  Cho HT  Lee Y 《Plant physiology》2008,147(2):624-635
The root hair is a model system for understanding plant cell tip growth. As phosphatidylinositol 3-phosphate [PtdIns(3)P] has been shown in other plant cell types to regulate factors that affect root hair growth, including reactive oxygen species (ROS) levels, cytoskeleton, and endosomal movement, we hypothesized that PtdIns(3)P is also important for root hair elongation. The enzyme that generates PtdIns(3)P, phosphatidylinositol 3-kinase (PI3K), was expressed in root hair cells of transgenic plants containing the PI3K promoter:beta-glucuronidase reporter construct. To obtain genetic evidence for the role of PtdIns(3)P in root hair elongation, we attempted to isolate Arabidopsis (Arabidopsis thaliana) mutant plants that did not express the gene VPS34 encoding the PI3K enzyme. However, the homozygous mutant was lethal due to gametophytic defects, and heterozygous plants were not discernibly different from wild-type plants. Alternatively, we made transgenic plants expressing the PtdIns(3)P-binding FYVE domain in the root hair cell to block signal transduction downstream of PtdIns(3)P. These transgenic plants had shorter root hairs and a reduced hair growth rate compared with wild-type plants. In addition, LY294002, a PI3K-specific inhibitor, inhibited root hair elongation but not initiation. In LY294002-treated root hair cells, endocytosis at the stage of final fusion of the late endosomes to the tonoplast was inhibited and ROS level decreased in a dose-dependent manner. Surprisingly, the LY294002 effects on ROS and root hair elongation were similar in rhd2 mutant plants, suggesting that RHD2 was not the major ROS generator in the PtdIns(3)P-mediated root hair elongation process. Collectively, these results suggest that PtdIns(3)P is required for maintenance of the processes essential for root hair cell elongation.  相似文献   

16.
Plant root hair formation is initiated when specialized elongating root epidermis cells (trichoblasts) assemble distinct domains at the plasma membrane/cell wall cell periphery complexes facing the root surface. These localities show accumulation of expansin and progressively transform into tip-growing root hair apices. Experimentation showed that trichoblasts made devoid of microtubules (MTs) were unaffected in root hair formation, whereas those depleted of F-actin by the G-actin sequestering agent latrunculin B had their root hair formation blocked after the bulge formation stage. In accordance with this, MTs are naturally depleted from early outgrowing bulges in which dense F-actin meshworks accumulate. These F-actin caps remain associated with tips of emerging and growing root hairs. Constitutive expression of the GFP-mouse talin fusion protein in transgenic Arabidopsis, which visualizes all classes of F-actin in a noninvasive mode, allowed in vivo confirmation of the presence of distinct F-actin meshworks within outgrowing bulges and at tips of young root hairs. Profilin accumulates, at both the protein and the mRNA levels, within F-actin-enriched bulges and at tips of emerging hairs. ER-based calreticulin and HDEL proteins also accumulate within outgrowing bulges and remain enriched at tips of emerging hairs. All this suggests that installation of the actin-based tip growth machinery takes place only after expansin-associated bulge formation and requires assembly of profilin-supported dynamic F-actin meshworks.  相似文献   

17.
转基因大麦中gfp基因的染色体位置及其表达   总被引:10,自引:0,他引:10  
通过对大麦小孢子进行基因枪轰击获得4株转绿色荧光蛋白基因(gfp)的植株(A、C、D、E),以gfp基因为探针进行荧光原位杂交(FISH)研究转化植株中转基因插入位置和基因表达。4个株系在染色体7L(5HL)的不同位置都有一个插入点,而E株系在染色体5S(7HS)还有第2个插入点。所有的转基因T0代植株都是半合子并在T1、T2代发生分离。D株系GFP未表达,但FISH和PCR分析表明gfp基因已成功插入其染色体。各株系在根尖和花粉中的GFP表达水平不同:C株系在花粉表达强而在根尖表达中等;A株系在花粉中等表达而在根尖表达较淡;E株系则在根尖高表达,花粉中等表达。A和C株系在根尖和花粉的GFP分离都表现单位点特性,而E株系的根尖分离表现重叠作用(15:1)特征,但在花粉中表达GFP的频率低。PCR结果和3个分离株系的根尖表达结果一致。D和E株系的GFP表达不正常可能和加基因插入位置或基因的结构有关。  相似文献   

18.
Postembryonic development of plants is dependent on both intrinsic genetic programs and environmental factors. The plasticity of root hair patterning in response to environmental signals was investigated in the Columbia-0 wild type and 19 Arabidopsis mutants carrying lesions in various parts of the root hair developmental pathway by withholding phosphate or iron (Fe) from the nutrient medium. In the aging primary root and in laterals of the wild type, the number of root hairs increased in response to phosphate and Fe deficiency in a manner typical of each growth type. Although an increase in root hair density in -phosphorus plants was mainly achieved by the formation of extra hairs over both tangential and radial wall of underlying cortical cells, roots of -Fe plants were characterized by a high percentage of extra hairs with two tips. Root hair patterning and hair length was differentially affected by the presence or absence of phosphate and Fe among the genotypes under investigation, pointing to separate cascades of gene activation under all three growth conditions. Divergence in root hair patterning was most pronounced among mutants with defects in genes that affect the first stages of differentiation, suggesting that nutritional signals are perceived at an early stage of epidermal cell development. During elongation of the root hairs, no differences in the requirement of gene products between the growth types were obvious. The role of genes involved in root hair development in the aging primary root of Arabidopsis under the various growth conditions is discussed.  相似文献   

19.
Root hairs are tip-growing long tubular outgrowths of specialized epidermal cells, and are important for nutrient and water uptake and interaction with the soil microflora. Here we characterized two poplar cellulose synthase-like D (CSLD) genes, PdCSLD5 and PdCSLD6, the most probable orthologs to the Arabidopsis AtCSLD3/KOJAK gene. Both PdCSLD5 and PdCSLD6 are strongly expressed in roots, including in the root hairs. Subcellular localization experiments showed that these two proteins are located not only in the polarized plasma membrane of root hair tips, but also in Golgi apparatus of the root hair and non-hair-forming cells. Overexpression of these two poplar genes in the atcsld3 mutant was able to rescue most of the defects caused by disruption of AtCSLD3, including root hair morphological changes, altered cell wall monosaccharide composition, increased non-crystalline β-1,4-glucan and decreased crystalline cellulose contents. Taken together, our results provide evidence indicating that PdCSLD5 and PdCSLD6 are functionally conserved with AtCSLD3 and support a role for PdCSLD5 and PdCSL6 specifically in crystalline cellulose production in poplar root hair tips. The results presented here also suggest that at least part of the mechanism of root hair formation is conserved between herbaceous and woody plants.  相似文献   

20.
Yano K  Suzuki T  Moriyasu Y 《Autophagy》2007,3(4):360-362
In previous studies, using a membrane-permeable protease inhibitor, E-64d, we showed that autophagy occurs constitutively in the root cells of barley and Arabidopsis. In the present study, a fusion protein composed of the autophagy-related protein AtAtg8 and green fluorescent protein (GFP) was expressed in Arabidopsis to visualize autophagosomes. We first confirmed the presence of autophagosomes with GFP fluorescence in the root cells of seedlings grown on a nutrient-sufficient medium. The number of autophagosomes changed as the root cells grew and differentiated. In cells near the apical meristem, autophagosomes were scarcely found. However, a small but significant number of autophagosomes existed in the elongation zone. More autophagosomes were found in the differentiation zone where cell growth ceases but the cells start to form root hair. In addition, we confirmed that autophagy is activated under starvation conditions in Arabidopsis root cells. When the root tips were cultured in a sucrose-free medium, the number of autophagosomes increased in the elongation and differentiation zones, and a significant number of autophagosomes appeared in cells near the apical meristem. The results suggest that autophagy in plant root cells is involved not only in nutrient recycling under nutrient-limiting conditions but also in cell growth and root hair formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号