首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sporulation in Bacillus subtilis is an attractive system in which to study the translocation of a chromosome across a membrane. Sporulating cells contain two sister chromosomes that are condensed in an elongated axial filament with the origins of replication anchored at opposite poles of the sporangium. The subsequent formation of a septum near one pole divides the sporangium unequally into a forespore (the smaller compartment) and a mother cell. The septum forms around the filament, trapping the origin-proximal region of one chromosome in the forespore. As a consequence, the trapped chromosome transverses the septum with the remainder being left in the mother cell. Next, SpoIIIE assembles at the middle of the septum to create a translocase that pumps the origin-distal, two-thirds of the chromosome into the forespore. Here, we address the question of how the DNA translocase assembles and how it localizes to the septal midpoint. We present evidence that DNA transversing the septum is an anchor that nucleates the formation of the DNA translocase. We propose that DNA anchoring is responsible for the assembly of other SpoIIIE-like DNA translocases, such as those that remove trapped chromosomes from the division septum of cells undergoing binary fission.  相似文献   

2.
FtsZ ring in bacterial cytokinesis   总被引:33,自引:5,他引:28  
FtsZ is localized to a cytokinetic ring at the cell division site in bacteria. In this review a model is discussed that suggests that FtsZ self assembles into a ring at a nucleation site formed on the cytoplasmic membrane under cell-cycle control. This model suggests that formation of the cytokinetic FtsZ ring initiates and coordinates the circumferential invagination of the cytoplasmic membrane and cell wall, leading to formation of the septum. It is also suggested that this process may be conserved among the peptidoglycan-containing eubacteria. In addition, similarities between FtsZ and tubulin are discussed.  相似文献   

3.
In Escherichia coli and other bacteria, MinD, along with MinE and MinC, rapidly oscillates from one pole of the cell to the other controlling the correct placement of the division septum. MinD binds to the membrane through its amphipathic C-terminal α-helix. This binding, promoted by ATP-induced dimerization, may be further enhanced by a consequent attraction of acidic phospholipids and formation of a stable proteolipid domain. In the context of this hypothesis we studied changes in dynamics of a model membrane caused by MinD binding using membrane-embedded fluorescent probes as reporters. A remarkable increase in membrane viscosity and order upon MinD binding to acidic phospholipids was evident from the pyrene and DPH fluorescence changes. This viscosity increase is cooperative with regards to the concentration of MinD-ATP, but not of the ADP form, indicative of dimerization. Moreover, similar changes in the membrane dynamics were demonstrated in the native inverted cytoplasmic membranes of E. coli, with a different depth effect. The mobility of pyrene-labeled phosphatidylglycerol indicated formation of acidic phospholipid-enriched domains in a mixed acidic-zwitterionic membrane at specific MinD/phospholipid ratios. A comparison between MinD from E. coli and Neisseria gonorrhea is also presented.  相似文献   

4.
The cell division gene divIB of Bacillus subtilis is essential for the normal rate of growth and division. The gene product, DivIB, is a membrane-bound protein in which the bulk of the protein (at the C-terminal end) is on the exterior surface of the cell membrane. DivIB is involved in the early stages of septum formation, but its exact role in cell division is unknown. To gain more information about the mode of action of DivIB in septum formation, we determined the location of DivIB within the cell membrane using immunofluorescence. This immunolocalization approach established that DivIB becomes localized to the division site before visible septation and remains localized to this site throughout the division process. Various DivIB immunostaining patterns were observed in immunofluorescence experiments and, together with cell length and nucleoid distance measurements, have allowed us to propose two models to describe DivIB localization during the cell cycle.  相似文献   

5.
The essential cell division protein FtsZ forms a dynamic ring structure at the future division site. This Z-ring contracts during cell division while maintaining a position at the leading edge of the invaginating septum. Using immunofluorescence microscopy we have characterized two situations in which non-ring FtsZ structures are formed. In ftsZ26 (temperature sensitive, Ts) mutant cells, FtsZ-spirals are formed and lead to formation of spirally invaginating septa, which in turn cause morphological abnormalities. In rodA sui mutant cells, which grow as spheres instead of rods, FtsZ-arcs are formed where asymmetric septal invaginations are initiated. The FtsZ-arcs later mature into complete FtsZ-rings. Our data show that Z-spirals and Z-arcs can contract and that in doing so, they determine the shape of the invaginating septa. These results also strongly suggest that in normal cell division, FtsZ is positioned to a single nucleation site on the inner membrane, from which it polymerizes bidirectionally around the cell circumference to form the Z-ring.  相似文献   

6.
The formation of cell wall septa was monitored in Escherichia coli B and B/r during synchronous growth in glucose media at 37 C by means of electron microscopy. The visible events of septation comprised the following sequence, starting at about 30 min of incubation: (a) bleb formation of the outer membrane; (b) invagination of mucopeptide and cytoplasmic membrane (with associated mesosomes); the outer membrane is excluded from the septum; (c) formation of a cross-wall; (d) ingrowth of the outer membrane during cell separation. The septum is composed of a fold of cytoplasmic membrane plus mucopeptide, and the latter is a double structure, composed of two opposed lamellae separated by an electron-transparent gap. Experiments with chloramphenicol and nalidixic acid suggested that division could occur in the presence of these inhibitors once a round of deoxyribonucleic acid replication is completed. The initial stages of septation, as estimated by the potential of the cells to produce bulges in the presence of ampicillin, may involve the modification of mucopeptide by hydrolases at the end of the C period. Assembly of the septum may occur during the first half of the D period by means of precursors synthesized during the preceding C period.  相似文献   

7.
Septa can be demonstrated in sections of Escherichia coli strains B and B/r after fixation with acrolein and glutaraldehyde. The septum consists of an ingrowth of the cytoplasmic membrane and the mucopeptide layer; the outer membrane is excluded from the septum until the cells begin to separate. Mesosomes have also been observed. The septum is highly labile and, except in the chain-forming strains, E. coli D22 env A and CRT 97, not easily preserved by standard procedures. The labile nature of the septum may be due to the presence of autolysin(s) located at the presumptive division site. Blocking division by addition of ampicillin (2 to 5 mug/ml) to cells of E. coli B/r produces a bulge at the middle of the cells; bulge formation is stopped by addition of chloramphenicol. Cephalosporins also induce bulge formation but may stop cell elongation as well as division. Bulge formation, due to the presumed action of an autolysin(s), may be an initial step in the septation sequence when the mucopeptide is modified to allow construction of the septum. In a nonseptate filament-forming strain, PAT 84, which ceases to divide at 42 C, bulge formation only occurs in the presence of ampicillin at the time of a shift-down at 30 C or at 42 C in the presence of NaCl (0.25 to 0.34 M). Experiments with chloramphenicol suggest that the filaments are fully compartmentalized but fail to divide owing to the inactivation, rather than loss of synthesis, of an autolysin at 42 C.  相似文献   

8.
The mechanism by which the membrane synthetic machinery might be co‐organized with the cell‐division architecture during the bacterial cell cycle remains to be investigated. We characterized a key enzyme of phospholipid and fatty acid synthesis in Bacillus subtilis, the acyl–acyl carrier protein phosphate acyltransferase (PlsX), and identified it as a component of the cell‐division machinery. Comprehensive interaction analysis revealed that PlsX interacts with FtsA, the FtsZ‐anchoring protein. PlsX mainly localized at the potential division site independent of FtsA and FtsZ and then colocalized with FtsA. By multidirectional approaches, we revealed that the Z‐ring stabilizes the association of PlsX at the septum and pole. The localization of PlsX is also affected by the progression of DNA replication. PlsX is needed for cell division and its inactivation leads to aberrant Z‐ring formation. We propose that PlsX localization is prior to Z‐ring formation in the hierarchy of septum formation events and that PlsX is important for co‐ordinating membrane synthesis with cell division in order to properly complete septum formation.  相似文献   

9.
Shih YL  Huang KF  Lai HM  Liao JH  Lee CS  Chang CM  Mak HM  Hsieh CW  Lin CC 《PloS one》2011,6(6):e21425
Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE(2-9), which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature.  相似文献   

10.
FtsK is a prokaryotic multidomain DNA translocase that coordinates chromosome segregation and cell division. FtsK is membrane anchored at the division septum and, guided by highly skewed DNA sequences, translocates the chromosome to bring the terminus of replication to the septum. Here, we use in vitro single-molecule and ensemble methods to unveil a mechanism of action in which the translocation and sequence-recognition activities are performed by different domains in FtsK.  相似文献   

11.
Faithful coordination between bacterial cell division and chromosome segregation in rod‐shaped bacteria, such as Escherichia coli and Bacillus subtilis, is dependent on the DNA translocase activity of FtsK/SpoIIIE proteins, which move DNA away from the division site before cytokinesis is completed. However, the role of these proteins in chromosome partitioning has not been well studied in spherical bacteria. Here, it was shown that the two Staphylococcus aureus FtsK/SpoIIIE homologues, SpoIIIE and FtsK, operate in independent pathways to ensure correct chromosome management during cell division. SpoIIIE forms foci at the centre of the closing septum in at least 50% of the cells that are close to complete septum synthesis. FtsK is a multifunctional septal protein with a C‐terminal DNA translocase domain that is not required for correct chromosome management in the presence of SpoIIIE. However, lack of both SpoIIIE and FtsK causes severe nucleoid segregation and morphological defects, showing that the two proteins have partially redundant roles in S. aureus.  相似文献   

12.
FtsI, FtsL, and FtsQ are three membrane proteins required for assembly of the division septum in the bacterium Escherichia coli. Cells lacking any of these three proteins form long, aseptate filaments that eventually lyse. FtsI, FtsL, and FtsQ are not homologous but have similar overall structures: a small cytoplasmic domain, a single membrane-spanning segment (MSS), and a large periplasmic domain that probably encodes the primary functional activities of these proteins. The periplasmic domain of FtsI catalyzes transpeptidation and is involved in the synthesis of septal peptidoglycan. The precise functions of FtsL and FtsQ are not known. To ask whether the cytoplasmic domain and MSS of each protein serve only as a membrane anchor or have instead a more sophisticated function, we have used molecular genetic techniques to swap these domains among the three Fts proteins and one membrane protein not involved in cell division, MalF. In the cases of FtsI and FtsL, replacement of the cytoplasmic domain and/or MSS resulted in the loss of the ability to support cell division. For FtsQ, MSS swaps supported cell division but cytoplasmic domain swaps did not. We discuss several potential interpretations of these results, including that the essential domains of FtsI, FtsL, and FtsQ have a role in regulating the localization and/or activity of these proteins to ensure that septum formation occurs at the right place in the cell and at the right time during the division cycle.  相似文献   

13.
Septation in Escherichia coli requires several gene products. One of these, FtsQ, is a simple bitopic membrane protein with a short cytoplasmic N terminus, a membrane-spanning segment, and a periplasmic domain. We have constructed a merodiploid strain that expresses both FtsQ and the fusion protein green fluorescent protein (GFP)-FtsQ from single-copy chromosomal genes. The gfp-ftsQ gene complements a null mutation in ftsQ. Fluorescence microscopy revealed that GFP-FtsQ localizes to the division site. Replacing the cytoplasmic and transmembrane domains of FtsQ with alternative membrane anchors did not prevent the localization of the GFP fusion protein, while replacing the periplasmic domain did, suggesting that the periplasmic domain is necessary and sufficient for septal targeting. GFP-FtsQ localization to the septum depended on the cell division proteins FtsZ and FtsA, which are cytoplasmic, but not on FtsL and FtsI, which are bitopic membrane proteins with comparatively large periplasmic domains. In addition, the septal localization of ZipA apparently did not require functional FtsQ. Our results indicate that FtsQ is an intermediate recruit to the division site.  相似文献   

14.
Bacillus subtilis undergoes a highly distinctive division during spore formation. It yields two unequal cells, the mother cell and the prespore, and septum formation is completed before the origin-distal 70% of the chromosome has entered the smaller prespore. The mother cell subsequently engulfs the prespore. Two different probes were used to study the behavior of the terminus (ter) region of the chromosome during spore formation. Only one ter region was observed at the time of sporulation division. A second ter region, indicative of chromosome separation, was not distinguishable until engulfment was nearing completion, when one was in the mother cell and the other in the prespore. Separation of the two ter regions depended on the DNA translocase SpoIIIE. It is concluded that SpoIIIE is required during spore formation for chromosome separation as well as for translocation; SpoIIIE is not required for separation during vegetative growth.  相似文献   

15.
Fine Structure of Bacillus megaterium During Synchronous Growth   总被引:27,自引:16,他引:11       下载免费PDF全文
A fine-structure study of synchronously dividing Bacillus megaterium revealed the sequence of events involved in the division of the cell. First, a mesosome develops as a concentric fold of the plasma membrane at the site of septum formation. The mesosome contains membrane-bound vesicular structures, 300 to 500 A in diameter, plus a large membrane-bound structure, 2,000 A in diameter. These larger vesicles are peculiar to mesosomes in this stage of division and are not observed in the mesosomes involved in spore septum formation. The transverse septum originates within the mesosome and remains enclosed during its subsequent growth across the cell. An intimate association is observed between mesosome vesicles, mesosome membrane, and the growing edge of the transverse septum. Prior to completion of the septum, the membranes bounding the mesosome fuse, and further wall thickening occurs within the structure formed by this fusion. At this time, the septum only equals the parent cell wall in thickness. The doubling in thickness of the septum, which is required for the production of two normal daughter cell walls, occurs during a second phase of wall thickening, which is characterized by the appearance of a constriction at the base of the septum. As the constriction widens, the wall in this region thickens, forming the typical rounded poles of the daughter cells. Capsular synthesis at the poles occurs during this second phase of wall thickening. Throughout the division process, the nuclear material appears to be associated at one end with a mesosome at or near the pole of the cell and at the other end to the mesosome involved in septum formation. This association frequently takes the form of a stalklike extension of the mesosome penetrating into the chromatin fibrils.  相似文献   

16.
In Escherichia coli, nine essential cell division proteins are known to localize to the division septum. FtsL is a 13-kDa bitopic membrane protein with a short cytoplasmic N-terminal domain, a membrane-spanning segment, and a periplasmic domain that has a repeated heptad motif characteristic of leucine zippers. Here, we identify the requirements for FtsL septal localization and function. We used green fluorescent protein fusions to FtsL proteins where domains of FtsL had been exchanged with analogous domains from either its Haemophilus influenzae homologue or the unrelated MalF protein to show that both the membrane-spanning segment and the periplasmic domain of FtsL are required for localization to the division site. Mutagenesis of the periplasmic heptad repeat motif severely impaired both localization and function as well as the ability of FtsL to drive the formation of sodium dodecyl sulfate-resistant multimers in vitro. These results are consistent with the predicted propensity of the FtsL periplasmic domain to adopt a coiled-coiled structure. This coiled-coil motif is conserved in all gram-negative and gram-positive FtsL homologues identified so far. Our data suggest that most of the FtsL molecule is a helical coiled coil involved in FtsL multimerization.  相似文献   

17.
Influx of calcium in platelets and red cells produces formation of vesicles shed from the plasma membrane. The time course of the shedding process closely correlates with the ability of both cells to stimulate prothrombinase activity when used as a source of phospholipid in the prothrombinase assay. This reflects increased surface exposure of phosphatidylserine, presumably resulting from a loss in membrane asymmetry. Evidence is presented that the shed vesicles have a random phospholipid distribution, while the remnant cells show a progressive loss of membrane phospholipid asymmetry when more shedding occurs. Removal of intracellular calcium produces a decrease of procoagulant activity of the remnant cells but not of that of the shed vesicles. This is consistent with reactivation of aminophospholipid translocase activity, being first inhibited by intracellular calcium and subsequently reactivated upon calcium removal. Involvement of aminophospholipid translocase is further supported by the observation that reversibility of procoagulant activity is also dependent on metabolic ATP and reduced sulfhydryl groups. The finding that this reversibility process is not apparent in shed vesicles may be ascribed to the absence of translocase or to a lack of ATP. These data support and extend the suggestion made by Sims et al. [1989) J. Biol. Chem. 264, 17049-17057) that membrane fusion, which is required for shedding to occur, produces transient flip-flop sites for membrane phospholipids. Furthermore, the present results indicate that scrambling of membrane phospholipids can only occur provided that aminophospholipid translocase is inactive.  相似文献   

18.
Cell division must only occur once daughter chromosomes have been fully separated. However, the initiating event of bacterial cell division, assembly of the FtsZ ring, occurs while chromosome segregation is still ongoing. We show that a two-step DNA translocase system exists in Bacillus subtilis that couples chromosome segregation and cell division. The membrane-bound DNA translocase SpoIIIE assembled very late at the division septum, and only upon entrapment of DNA, while its orthologue, SftA (YtpST), assembled at each septum in B. subtilis soon after FtsZ. Lack of SftA resulted in a moderate segregation defect at a late stage in the cell cycle. Like the loss of SpoIIIE, the absence of SftA was deleterious for the cells during conditions of defective chromosome segregation, or after induction of DNA damage. Lack of both proteins exacerbated all phenotypes. SftA forms soluble hexamers in solution, binds to DNA and has DNA-dependent ATPase activity, which is essential for its function in vivo . Our data suggest that SftA aids in moving DNA away from the closing septum, while SpoIIIE translocates septum-entrapped DNA only when septum closure precedes complete segregation of chromosomes.  相似文献   

19.
Sato M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,227(1):177-187
Cyanelles of the biflagellate protist Cyanophora paradoxa have retained the peptidoglycan layer, which is critical for division, as indicated by the inhibitory effects of β-lactam antibiotics. An FtsZ ring is formed at the division site during cyanelle division. We used immunofluorescence microscopy to observe the process of FtsZ ring formation, which is expected to lead cyanelle division, and demonstrated that an FtsZ arc and a split FtsZ ring emerge during the early and late stages of cyanelle division, respectively. We used an anti-FtsZ antibody to observe cyanelle FtsZ rings. We observed bright, ring-shaped fluorescence of FtsZ in cyanelles. Cyanelles were kidney-shaped shortly after division. Fluorescence indicated that FtsZ did not surround the division plane at an early stage of division, but rather formed an FtsZ arc localized at the constriction site. The constriction spread around the cyanelle, which gradually became dumbbell shaped. After the envelope’s invagination, the ring split parallel to the cyanelle division plane without disappearing. Treatment of C. paradoxa cells with ampicillin, a β-lactam antibiotic, resulted in spherical cyanelles with an FtsZ arc or ring on the division plane. Transmission electron microscopy of the ampicillin-treated cyanelle envelope membrane revealed that the surface was not smooth. Thus, the inhibition of peptidoglycan synthesis by ampicillin causes the inhibition of septum formation and a marked delay in constriction development. The formation of the FtsZ arc and FtsZ ring is the earliest sign of cyanelle division, followed by constriction and septum formation.  相似文献   

20.
At the onset of sporulation in Bacillus subtilis, two potential division sites are assembled at each pole, one of which will be used to synthesize the asymmetrically positioned sporulation septum. Using the vital stain FM 4-64 to label the plasma membrane of living cells, we examined the fate of these potential division sites in wild-type cells and found that, immediately after the formation of the sporulation septum, a partial septum was frequently synthesized within the mother cell at the second potential division site. Using time-lapse deconvolution microscopy, we were able to watch these partial septa first appear and then disappear during sporulation. Septal dissolution was dependent on sigma E activity and was partially inhibited in mutants lacking the sigma E-controlled proteins SpoIID, SpoIIM and SpoIIP, which may play a role in mediating the degradation of septal peptidoglycan. Our results support a model in which sigma E inhibits division at the second potential division site by two distinct mechanisms: inhibition of septal biogenesis and the degradation of partial septa formed before sigma E activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号