首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified strong topoisomerase sites (STS) for Mycobacteruim smegmatis topoisomerase I in double-stranded DNA context using electrophoretic mobility shift assay of enzyme-DNA covalent complexes. Mg2+, an essential component for DNA relaxation activity of the enzyme, is not required for binding to DNA. The enzyme makes single-stranded nicks, with transient covalent interaction at the 5'-end of the broken DNA strand, a characteristic akin to prokaryotic topoisomerases. More importantly, the enzyme binds to duplex DNA having a preferred site with high affinity, a property similar to the eukaryotic type I topoisomerases. The preferred cleavage site is mapped on a 65 bp duplex DNA and found to be CG/TCTT. Thus, the enzyme resembles other prokaryotic type I topoisomerases in mechanistics of the reaction, but is similar to eukaryotic enzymes in DNA recognition properties.  相似文献   

2.
DNA topoisomerases play essential roles in many DNA metabolic processes. It has been suggested that topoisomerases play an essential role in DNA repair. Topoisomerases can introduce DNA damage upon exposure to drugs that stabilize the covalent protein-DNA intermediate of the topoisomerase reaction. Lesions in DNA are also able to trap topoisomerase-DNA intermediates, suggesting that topoisomerases have the potential to either assist in DNA repair by locating sites of damage or exacerbating DNA damage by generation of additional damage at the site of a lesion. We have shown that overexpression of yeast topoisomerase I (TOP1) conferred hypersensitivity to methyl methanesulfonate and other DNA-damaging agents, whereas expression of a catalytically inactive enzyme did not. Overexpression of topoisomerase II did not change the sensitivity of cells to these DNA-damaging agents. Yeast cells lacking TOP1 were not more resistant to DNA damage than cells expressing wild type levels of the enzyme. Yeast topoisomerase I covalent complexes can be trapped efficiently on UV-damaged DNA. We suggest that TOP1 does not participate in the repair of DNA damage in yeast cells. However, the enzyme has the potential of exacerbating DNA damage by forming covalent DNA-protein complexes at sites of DNA damage.  相似文献   

3.
Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerases select the sites of their action. In highly crowded DNA in living cells random passages between contacting segments would only increase the extent of entanglement. Using molecular dynamics simulations we observed that in actively supercoiled DNA molecules the entanglements resulting from DNA knotting or catenation spontaneously approach sites of nicks and gaps in the DNA. Type I topoisomerases, that preferentially act at sites of nick and gaps, are thus naturally provided with DNA–DNA juxtapositions where a passage results in an error-free DNA unknotting or DNA decatenation.  相似文献   

4.
A novel nuclease activity have been detected at three specific sites in the chromatin of the spacer region flanking the 5'-end of the ribosomal RNA gene from Tetrahymena. The endogenous nuclease does not function catalytically in vitro, but is in analogy with the DNA topoisomerases activated by strong denaturants to cleave DNA at specific sites. The endogenous cleavages have been mapped at positions +50, -650 and -1100 relative to the 5'-end of the pre-35S rRNA. The endogenous cleavage sites are associated with micrococcal nuclease hypersensitive sites and DNase I hypersensitive regions. Thus, a single well-defined micrococcal nuclease hypersensitive site is found approximately 130 bp upstream from each of the endogenous cleavages. Clusters of defined sites, the majority of which fall within the 130 bp regions defined by vicinal micrococcal nuclease and endogenous cleavages, constitute the DNase I hypersensitive regions.  相似文献   

5.
The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.  相似文献   

6.
Eukaryotic DNA topoisomerase I introduces transient single-stranded breaks on double-stranded DNA and spontaneously breaks down single-stranded DNA. The cleavage sites on both single and double-stranded SV40 DNA have been determined by DNA sequencing. Consistent with other reports, the eukaryotic enzymes, in contrast to prokaryotic type I topoisomerases, links to the 3'-end of the cleaved DNA and generates a free 5'-hydroxyl end on the other half of the broken DNA strand. Both human and calf enzymes cleave SV40 DNA at the identical and specific sites. From 827 nucleotides sequenced, 68 cleavage sites were mapped. The majority of the cleavage sites were present on both double and single-stranded DNA at exactly the same nucleotide positions, suggesting that the DNA sequence is essential for enzyme recognition. By analyzing all the cleavage sequences, certain nucleotides are found to be less favored at the cleavage sites. There is a high probability to exclude G from positions -4, -2, -1 and +1, T from position -3, and A from position -1. These five positions (-4 to +1 oriented in the 5' to 3' direction) around the cleavage sites must interact intimately with topo I and thus are essential for enzyme recognition. One topo I cleavage site which shows atypical cleavage sequence maps in the middle of a palindromic sequence near the origin of SV40 DNA replication. It occurs only on single-stranded SV40 DNA, suggesting that the DNA hairpin can alter the cleavage specificity. The strongest cleavage site maps near the origin of SV40 DNA replication at nucleotide 31-32 and has a pentanucleotide sequence of 5'-TGACT-3'.  相似文献   

7.
It has been shown earlier that eukaryotic type I DNA topoisomerases act on duplex DNA regions, while eubacterial type I topoisomerases require single-stranded regions. The present paper demonstrates that the type I topoisomerase from extremely thermophilic archaebacteria, reverse gyrase, winds DNA by binding to single-stranded DNA regions. Thus, type I topoisomerases, both relaxing one in eubacteria and reverse gyrase in extremely thermophilic archaebacteria share a substrate specificity to melted DNA regions. The important consequence of this specificity is that the cellular DNA superhelical stress actively controlled by bacterial topoisomerases is confined to a narrow range characterized by a low stability of the double helix. Hence we suppose that bacterial topoisomerase systems control duplex stability near its minimum, for which purpose they create an appropriate negative superhelicity at moderate temperatures or a positive one at extremely high temperatures, the feedback being ensured by the aforesaid specificity of type I bacterial topoisomerases.  相似文献   

8.
A Richter  J Ruff 《Biochemistry》1991,30(40):9741-9748
The intracellular substrate for eukaryotic DNA topoisomerases is chromatin rather than protein-free DNA. Yet, little is known about the action of topoisomerases on chromatin-associated DNA. We have analyzed to what extent the organization of DNA in chromatin influences the accessibility of DNA molecules for topoisomerase I cleavage in vitro. Using potassium dodecyl sulfate precipitation (Trask et al., 1984), we found that DNA in chromatin is cleaved by the enzyme with somewhat reduced efficiency compared to protein-free DNA. Furthermore, using native SV40 chromatin and mononucleosomes assembled in vitro, we show that DNA bound to histone octamer complexes is cleaved by topoisomerase I and that the cleavage sites as well as their overall distribution are identical in histone-bound and in protein-free DNA molecules.  相似文献   

9.
DNA derived from the 5' spacers of the rRNA genes from Tetrahymena has unusual electrophoretic properties. These properties made it possible to devise a simple electrophoretic procedure for isolating specific rDNA spacer fragments from preparations of total nuclear DNA, enabling us to study DNA modifications at the level of unfractionated nuclei. We have employed the method to study the distribution of topoisomerase I binding sites on the r-chromatin (ribosomal chromatin) of Tetrahymena at the DNA sequence level. The presence of topoisomerase I in situ was detected by its ability to introduce single-strand cleavages into DNA. The positions of the cleavages were determined on DNA sequencing gels after isolation of the fragments. Topoisomerase I binding in r-chromatin is sequence specific and cleavage is confined to a 16 base-pair conserved sequence element previously determined to be a high-affinity binding site for topoisomerase I in vitro. The high degree of sequence specificity may be of important functional significance, as we find a similar sequence specificity with enzymes isolated from five evolutionarily distant species, indicating that preference for the 16 base-pair element is an intrinsic property of eukaryotic type I topoisomerases.  相似文献   

10.
We performed numerical simulations of DNA chains to understand how local geometry of juxtaposed segments in knotted DNA molecules can guide type II DNA topoisomerases to perform very efficient relaxation of DNA knots. We investigated how the various parameters defining the geometry of inter-segmental juxtapositions at sites of inter-segmental passage reactions mediated by type II DNA topoisomerases can affect the topological consequences of these reactions. We confirmed the hypothesis that by recognizing specific geometry of juxtaposed DNA segments in knotted DNA molecules, type II DNA topoisomerases can maintain the steady-state knotting level below the topological equilibrium. In addition, we revealed that a preference for a particular geometry of juxtaposed segments as sites of strand-passage reaction enables type II DNA topoisomerases to select the most efficient pathway of relaxation of complex DNA knots. The analysis of the best selection criteria for efficient relaxation of complex knots revealed that local structures in random configurations of a given knot type statistically behave as analogous local structures in ideal geometric configurations of the corresponding knot type.  相似文献   

11.
12.
Dai P  Wang Y  Ye R  Chen L  Huang L 《Journal of bacteriology》2003,185(18):5500-5507
We report the production, purification, and characterization of a type IA DNA topoisomerase, previously designated topoisomerase I, from the hyperthermophilic archaeon Sulfolobus solfataricus. The protein was capable of relaxing negatively supercoiled DNA at 75 degrees C in the presence of Mg2+. Mutation of the putative active site Tyr318 to Phe318 led to the inactivation of the protein. The S. solfataricus enzyme cleaved oligonucleotides in a sequence-specific fashion. The cleavage occurred only in the presence of a divalent cation, preferably Mg2+. The cofactor requirement of the enzyme was partially satisfied by Cu2+, Co2+, Mn2+, Ca2+, or Ni2+. It appears that the enzyme is active with a broader spectrum of metal cofactors in DNA cleavage than in DNA relaxation (Mg2+ and Ca2+). The enzyme-catalyzed oligonucleotide cleavage required at least 7 bases upstream and 2 bases downstream of the cleavage site. Analysis of cleavage by the S. solfataricus enzyme on a set of oligonucleotides revealed a consensus cleavage sequence of the enzyme: 5'-G(A/T)CA(T)AG(T)G(A)X / XX-3'. This sequence bears more resemblance to the preferred cleavage sites of topoisomerases III than to those of topoisomerases I. Based on these data and sequence analysis, we designate the enzyme S. solfataricus topoisomerase III.  相似文献   

13.
Mycobacterium smegmatis topoisomerase I has several distinctive features. The absence of the zinc finger motif found in other prokaryotic type I topoisomerases and the ability of the enzyme to recognise single-stranded and duplex DNA are unique characteristics of the enzyme. We have mapped the strong topoisomerase sites of the enzyme on genomic DNA sequences from Mycobacterium tuberculosis and M.smegmatis. The enzyme does not nick DNA in random fashion and DNA cleavage occurred at a few specific sites. Mapping of these sites revealed conservation of a pentanucleotide motif CG/TCT↓T at the cleavage site (↓ represents the cleavage site). The enzyme binds and cleaves consensus oligonucleotides having this sequence motif. The protein exhibits a very high preference for C or a G residue at the +2 position with respect to the cleavage site. Based on earlier and the present studies we propose that the enzyme functions in vivo mainly at these specific sites to carry out topological reactions.  相似文献   

14.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

15.
The nucleotide preferences of calf thymus topoisomerases I and II for recognition of supercoiled DNA have been assessed by the relaxation and cleavage of DNA containing base-specific phosphorothioate substitutions in one strand. The type I enzyme is inhibited to varying degrees by all modified DNAs, but most effectively (by approximately 60%) if deoxyguanosine 5'-O-(1-thiomonophosphate) (dGMP alpha S) is incorporated into negatively supercoiled DNA. A DNA in which all internucleotide linkages of one strand are phosphorothionate is relaxed, most probably via the unsubstituted strand. The type II enzyme is inhibited when deoxyadenosine 5'-O-(1-thiomonophosphate) (dAMP alpha S) or deoxyribosylthymine 5'-O-(1-thiomonophosphate) is incorporated into the DNA substrate, and the course of the relaxation reaction changes from a distributive mode to a predominantly processive mode. A fully substituted DNA is very poorly relaxed by the type II enzyme, illustrating the strict commitment of the enzyme to relaxation via double-strand cleavage. The sense of supercoiling does not affect the inhibition profile of either enzyme. DNA strand breaks introduced by type II topoisomerase in a normal control DNA or deoxycytidine 5'-O-(1-thiomonophosphate)-substituted DNA on treatment with sodium dodecyl sulfate at low ionic strength are prevented by pretreatment with 0.2 M NaCl. In contrast, breaks in DNA having either dAMP alpha S or all four phosphorothioate nucleotides incorporated in one strand are prevented only with higher NaCl concentrations. Thus indicating activity at the phosphorothioate linkage 5' to dA but not 5' to dC. We conclude that topoisomerase II activity occurs preferentially at sites possessing dAMP or dTMP, and that dGMP is involved in DNA recognition by topoisomerase I.  相似文献   

16.
DNA topoisomerase I from Mycobacterium smegmatis unlike many other type I topoisomerases is a site specific DNA binding protein. We have investigated the sequence specific DNA binding characteristics of the enzyme using specific oligonucleotides of varied length. DNA binding, oligonucleotide competition and covalent complex assays show that the substrate length requirement for interaction is much longer ( approximately 20 nucleotides) in contrast to short length substrates (eight nucleotides) reported for Escherichia coli topoisomerase I and III. P1 nuclease and KMnO(4) footprinting experiments indicate a large protected region spanning about 20 nucleotides upstream and 2-3 nucleotides downstream of the cleavage site. Binding characteristics indicate that the enzyme interacts efficiently with both single-stranded and double-stranded substrates containing strong topoisomerase I sites (STS), a unique property not shared by any other type I topoisomerase. The oligonucleotides containing STS effectively inhibit the M. smegmatis topoisomerase I DNA relaxation activity.  相似文献   

17.
18.
DNA topoisomerases control the topology of DNA (e.g., the level of supercoiling) in all cells. Type IIA topoisomerases are ATP-dependent enzymes that have been shown to simplify the topology of their DNA substrates to a level beyond that expected at equilibrium (i.e., more relaxed than the product of relaxation by ATP-independent enzymes, such as type I topoisomerases, or a lower-than-equilibrium level of catenation). The mechanism of this effect is currently unknown, although several models have been suggested. We have analyzed the DNA relaxation reactions of type II topoisomerases to further explore this phenomenon. We find that all type IIA topoisomerases tested exhibit the effect to a similar degree and that it is not dependent on the supercoil-sensing C-terminal domains of the enzymes. As recently reported, the type IIB topoisomerase, topoisomerase VI (which is only distantly related to type IIA enzymes), does not exhibit topology simplification. We find that topology simplification is not significantly dependent on circle size in the range ∼ 2-9 kbp and is not altered by reducing the free energy available from ATP hydrolysis by varying the ADP:ATP ratio. A direct test of one model (DNA tracking; i.e., sliding of a protein clamp along DNA to trap supercoils) suggests that this is unlikely to be the explanation for the effect. We conclude that geometric selection of DNA segments by the enzymes is likely to be a primary source of the effect, but that it is possible that other kinetic factors contribute. We also speculate whether topology simplification might simply be an evolutionary relic, with no adaptive significance.  相似文献   

19.
DNA topoisomerases I and II are the two major nuclear enzymes capable of relieving torsional strain in DNA. Of these enzymes, topoisomerase I plays the dominant role in relieving torsional strain during chromatin assembly in cell extracts from oocytes, eggs, and early embryos. We tested if the topoisomerases are used differentially during chromatin assembly in Saccharomyces cerevisiae by a combined biochemical and pharmacological approach. As measured by plasmid supercoiling, nucleosome deposition is severely impaired in assembly extracts from a yeast mutant with no topoisomerase I and a temperature-sensitive form of topoisomerase II (strain top1-top2). Expression of wild-type topoisomerase II in strain top1-top2 fully restored assembly-driven supercoiling, and assembly was equally efficient in extracts from strains expressing either topoisomerase I or II alone. Supercoiling in top1-top2 extract was rescued by adding back either purified topoisomerase I or II. Using the topoisomerase II poison VP-16, we show that topoisomerase II activity during chromatin assembly is the same in the presence and absence of topoisomerase I. We conclude that both topoisomerases I and II can provide the DNA relaxation activity required for efficient chromatin assembly in mitotically cycling yeast cells.  相似文献   

20.
Although highly homologous to the other eukaryotic type I DNA topoisomerases, vaccinia virus DNA topoisomerase I is distinct in its resistance to the anti-cancer drug camptothecin. After comparison of available sequences of sensitive and resistant type I topoisomerases, the aspartic acid at position 221 of vaccinia virus topoisomerase I is mutated to a valine. The resulting mutant protein is partially active. In contrast to the wild type enzyme, the relaxation of supercoiled DNA is inhibited by camptothecin. Its cleavage reaction with DNA is enhanced by camptothecin due to inhibition of religation of DNA. This demonstrates that even though the size of vaccinia virus is only about one-third that of the other camptothecin-sensitive topoisomerases, it has a potential interaction site for camptothecin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号