首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypoxia inducible factor (HIF)-1alpha over-expression may have beneficial effects in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic disease. Our previous study showed the feasibility of ex vivo modification of endothelial progenitor cells (EPCs) by HIF-1alpha transfection. In this study, we sought to determine if such ex vivo modified EPCs facilitated functional therapeutic neovascularization. Ad-HIF-1alpha was transduced in human EPC in vitro. HIF-1alpha-transduced EPCs were administered to nude mice with hindlimb ischemia. BrdU-labeling of these EPCs showed that they enhanced neovascularization in vivo. Limb and toe necrosis was significantly reduced in HIF-1alpha-EPC group compared to GFP-EPC group and medium control group at 14 days after transplantation (both P<0.05). A statistically significant difference was still observed in the HIF-1alpha group until 1 and 2 months of follow-up. Neovascularization was improved by both histological and physiological assessments. Exogenous EPC homing was observed. HIF-1alpha over-expression enhanced its mRNA and protein expression in the ischemia zone. The expression of genes downstream of HIF-1alpha was examined to explore the possible mechanism of EPC homing. In conclusion, HIF-1alpha-EPC gene transfer augments impaired neovascularization in experimentally induced mouse hindlimb ischemia in vivo.  相似文献   

2.
Endothelial progenitor cells (EPCs) play an essential role in angiogenesis but are functionally impaired in diabetes. We recently reported that decreased expression of manganese superoxide dismutase (MnSOD) critically contributes to diabetic EPC dysfunction. AMP-activated protein kinase (AMPK) activation has been shown to induce MnSOD and suppress hyperglycemia-induced mitochondrial ROS production in endothelial cells. However, whether AMPK protects EPCs from oxidative stress in diabetes is unknown. We tested the hypothesis that AMPK activation rescues impaired EPC functions through MnSOD induction in type 1 diabetes. Bone marrow-derived EPCs from adult male streptozotocin-induced diabetic mice and normal controls were used. AMPK activity was decreased in diabetic EPCs, indicated by reduced AMPK and acetyl-CoA carboxylase phosphorylation. AMPK activation by treating diabetic EPCs with its selective agonist AICAR rescued their in vitro functions, including Matrigel tube formation, adhesion, and migration. Furthermore, AICAR restored the decreased MnSOD protein and enzymatic activity and suppressed the mitochondrial superoxide level in diabetic EPCs, indicated by MitoSOX flow cytometry. These beneficial effects of AICAR on MnSOD and EPC functions were significantly attenuated by silencing MnSOD or AMPK antagonist compound C pretreatment. Finally, the expression of protein phosphatase 2A, a key enzyme for AMPK dephosphorylation and inactivation, was increased in diabetic EPCs, and its inhibition by siRNA or okadaic acid reversed the deficient AMPK activation and MnSOD level in diabetic EPCs. These findings demonstrate for the first time that AMPK activation rescues impaired EPC functions and suppresses mitochondrial superoxide by inducing MnSOD in type 1 diabetes.  相似文献   

3.
Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout (AGT+/−) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of AGT+/− EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in AGT+/− EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-1α and -2α were downregulated in AGT+/− early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-1α were suppressed in AGT+/− EPCs. In AGT+/− mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.  相似文献   

4.
Angiogenesis requires the mobilization of progenitor cells from the bone marrow (BM) and homing of progenitor cells to ischemic tissue. The cholesterol lowering drug Statins can stimulate angiogenesis via mobilization of BM derived endothelial progenitor cells (EPCs), promoting EPC migration, and inhibiting EPC apoptosis. The chemokine stromal cell-derived factor-1 (SDF-1) augments EPC chemotaxis, facilitates EPC incorporation into the neovasculature. The combined use of a statin to mobilize EPCs and local over-expression of SDF-1 to augment EPC homing to ischemic muscle resulted in superior angiogenesis versus use of either agent alone. Their effects are through augmenting EPC mobilization, incorporation, proliferation, migration, and tube formation while inhibiting EPC apoptosis. Statin and SDF-1 therefore display synergism in promoting neovascularization by improving reperfusion of ischemic muscle, increasing progenitor cell presentation and capillary density in ischemic muscle, and diminishing apoptosis. These results suggest that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia.  相似文献   

5.
Decreased number and impaired functions of endothelial progenitor cells (EPCs) leading to impaired vasculogenesis have been associated with rheumatoid arthritis (RA). Defective vasculogenesis has also been implicated in premature atherosclerosis in RA. Recently, early-outgrowth monocytic and late-outgrowth hemangioblastic EPC subsets have been characterized. Hemangioblastic EPCs may exert increased numbers in active RA and may play a role in vascular repair underlying RA.  相似文献   

6.
7.
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that was recently identified as a non‐cognate ligand of the CXC‐family chemokine receptors 2 and 4 (CXCR2 and CXCR4). MIF is expressed and secreted from endothelial cells (ECs) following atherogenic stimulation, exhibits chemokine‐like properties and promotes the recruitment of leucocytes to atherogenic endothelium. CXCR4 expressed on endothelial progenitor cells (EPCs) and EC‐derived CXCL12, the cognate ligand of CXCR4, have been demonstrated to be critical when EPCs are recruited to ischemic tissues. Here we studied whether hypoxic stimulation triggers MIF secretion from ECs and whether the MIF/CXCR4 axis contributes to EPC recruitment. Exposure of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAoECs) to 1% hypoxia led to the specific release of substantial amounts of MIF. Hypoxia‐induced MIF release followed a biphasic behaviour. MIF secretion in the first phase peaked at 60 min. and was inhibited by glyburide, indicating that this MIF pool was secreted by a non‐classical mechanism and originated from pre‐formed MIF stores. Early hypoxia‐triggered MIF secretion was not inhibited by cycloheximide and echinomycin, inhibitors of general and hypoxia‐inducible factor (HIF)‐1α‐induced protein synthesis, respectively. A second phase of MIF secretion peaked around 8 hrs and was likely due to HIF‐1α‐induced de novo synthesis of MIF. To functionally investigate the role of hypoxia‐inducible secreted MIF on the recruitment of EPCs, we subjected human AcLDL+ KDR+ CD31+ EPCs to a chemotactic MIF gradient. MIF potently promoted EPC chemotaxis in a dose‐dependent bell‐shaped manner (peak: 10 ng/ml MIF). Importantly, EPC migration was induced by supernatants of hypoxia‐conditioned HUVECs, an effect that was completely abrogated by anti‐MIF‐ or anti‐CXCR4‐antibodies. Thus, hypoxia‐induced MIF secretion from ECs might play an important role in the recruitment and migration of EPCs to hypoxic tissues such as after ischemia‐induced myocardial damage.  相似文献   

8.
Endothelial progenitor cells (EPCs), important for endothelial regeneration and vasculogenesis, are reduced by cigarette smoking. To elucidate the mechanisms, we examined the effects of electronegative LDL, circulating in chronic smokers, on EPC differentiation. Using ion-exchange chromatography, we purified smoker LDL into five subfractions, L1-L5. In matched, nonsmoking healthy subjects, L5, the most electronegative subfraction, was either absent or scanty. Sustained L5 treatment inhibited CD31 and KDR expression and EPC differentiation, whereas L1-L4 had no effect. L5 also inhibited telomerase activity to accelerate EPC senescence in correlation with reduced Akt phosphorylation. Transfection of day 3 EPCs with dominant negative Akt constructs inhibited CD31 and KDR expression, stalled EPC differentiation, and promoted early senescence. In contrast, transfection with constitutively active Akt rendered the EPCs resistant to L5, allowing normal maturation. L5 upregulated the lectin-like oxidized low density lipoprotein receptor 1 (LOX-1), and pretreatment of EPCs with TS20, a LOX-1-neutralizing antibody, blocked internalization of L5 by EPCs and prevented L5-mediated inhibition of EPC differentiation. Mixing L5 with L1 to physiological L5/L1 ratios did not attenuate L5's effects. These findings suggest that cigarette smoking is associated with the formation of L5, which inhibits EPC differentiation by impairing Akt phosphorylation via the LOX-1 receptor.  相似文献   

9.
The aim of this investigation was to determine whether tumour necrosis factor-alpha (TNF-α) has any effect on endothelial progenitor cells (EPCs). Total mononuclear cells were isolated from peripheral blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture dishes. After 7 days culture, attached cells were stimulated with tumour necrosis factor-α (final concentrations: 0, 10, 20, 50 and 100 mg/l) for 0, 6, 12, 24 and 48 h. EPCs were characterized as adherent cells double positive for DiLDL-uptake and lectin binding, by direct fluorescence staining. EPC proliferation and migration were assayed using the MTT assay and modified Boyden chamber assay, respectively. EPC adhesion assay was performed by re-plating those cells on fibronectin-coated dishes, and adherent cells were counted. Tube formation activity was assayed using a tube formation kit. Levels of apoptosis were revealed using an annexin V apoptosis detection kit. Vascular endothelial growth factor Receptor-1 (VEGF-R1) and stromal derived factor-1 (SDF-1) mRNA, assessed by real-time RT-PCR inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were assayed by western blot analysis. Incubation of EPCs with tumour necrosis factor-α reduced EPC proliferation, migration, adhesion, tube formation capacity, iNOS and eNOS in concentration- and time-dependent manners. Tumour necrosis factor-α reduced proliferation, migration, adhesion and tube formation capacity of EPCs. TNF-α increased EPC apoptosis level, reduced VEGF-R1 and SDF-1 mRNA expression; tumour necrosis factor-α also reduced iNOS and eNOS in the EPCs.  相似文献   

10.
Neovascularization is essential for tumor growth. We have previously reported that the chemokine receptor CXCR2 is an important regulator in tumor angiogenesis. Here we report that the mobilization of bone marrow (BM)-derived endothelial progenitor cells (EPCs) is impaired in CXCR2 knockout mice harboring pancreatic cancers. The circulating levels of EPCs (positive for CD34, CD117, CD133, or CD146) are decreased in the bone marrow and/or blood of tumor-bearing CXCR2 knockout mice. CXCR2 gene knockout reduced BM-derived EPC proliferation, differentiation, and vasculogenesis in vitro. EPCs double positive for CD34 and CD133 increased tumor angiogenesis and pancreatic cancer growth in vivo. In addition, CD133(+) and CD146(+) EPCs in human pancreatic cancer are increased compared with normal pancreas tissue. These findings indicate a role of BM-derived EPC in pancreatic cancer growth and provide a cellular mechanism for CXCR2 mediated tumor neovascularization.  相似文献   

11.
There is evidence that angiotensin II (Ang II) may impair the functions of endothelial progenitor cells (EPCs). It was revealed that DJ‐1 could resist oxidative stress. In this study, we investigated whether DJ‐1 could protect EPCs against Ang II‐induced cell damage. The proliferation and migration of EPCs were strongly reduced in the Ang II group and were increased by overexpression of DJ‐1. Western blotting indicated that the increased expression of the senescence marker β‐galactosidase and decreased expression of adhesion molecules (ICAM‐1, VCAM‐1) induced by Ang II were reversed after Ad‐DJ‐1 transfection. The reduced angiogenic capacity of EPCs caused by Ang II was also improved after Ad‐DJ‐1 transfection. Moreover, Ang II significantly increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory cytokines (TNF‐α and IL‐1β), reduced the levels of superoxide dismutase (SOD), glutathione (GSH), and these were reversed by Ad‐DJ‐1 transfection. Expression of peroxisome proliferator‐activated receptor‐γ (PPARγ) and heme oxygenase (HO‐1) was increased by DJ‐1. Therefore, HO‐1 siRNA were constructed and transfected into EPCs, and the results showed that HO‐1 siRNA transfection inhibited the effects of DJ‐1 on EPC function. Thus, our study implies that DJ‐1 may protect EPCs against Ang II‐induced dysfunction by activating the PPARγ/HO‐1. J. Cell. Biochem. 119: 392–400, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
Autologous endothelial progenitor cell (EPC) transplantation has been suggested as a potential therapeutic approach in diabetic neuropathy (DN). However, such treatment might be limited by safety concerns regarding possible unwanted proliferation or differentiation of the transplanted stem cells. An alternative approach is the stimulation of endogenous bone-marrow-derived EPC (BM-EPC) recruitment into ischemic lesions by the administration of stem cell mobilization agents or chemokines. We first tested the EPC mobilization effect of vascular endothelial growth factor (VEGF) and AMD3100 in a mouse model of diabetes and found that AMD3100 was effective as an EPC mobilization agent, whereas VEGF did not increase circulating EPCs in these animals. Because recent studies have suggested that deceased local expression of stromal-cell-derived factor (SDF)-1α in diabetes is the main cause of defective EPC migration, AMD3100 was administrated systemically to stimulate EPC mobilization and SDF-1α was injected locally to enhance its migration into the streptozotocin-induced DN mice model. This combined therapy increased local expression levels of vasculogenesis-associated factors and newly formed endothelial cells in the sciatic nerve, resulting in the restoration of the sciatic vasa nervorum. The treatment also improved the impaired conduction velocity of the sciatic nerve in DN mice. Thus, AMD3100 might be an effective EPC mobilization agent in diabetes, with local SDF-1α injection synergistically increasing vascularity in diabetic nerves. This represents a novel potential therapeutic option for DN patients.  相似文献   

13.
14.
Migration is an innate and fundamental cellular function that enables hematopoietic stem cells (HSCs) and endothelial progenitors (EPCs) to leave the bone marrow, relocate to distant tissue, and to return to the bone marrow. An increasing number of studies demonstrate the widening scope of the therapeutic potential of both HSCs and endothelial cells. Therapeutic success however not only relies upon their ability to repair damaged tissue, but is also fundamentally dependent on the migration to these areas. Extensive in vivo and in vitro research efforts have shown that the most significant effects seen on HSC migration are initiated by the chemokine SDF-1alpha. In this review we will elucidate the many cellular and systemic factors of HSC and EPC cell migration and their modi operandi.  相似文献   

15.
Number and function of endothelial progenitor cells (EPCs) are down-regulated in patients with coronary artery disease (CAD). Integrin-linked kinase (ILK) is a signal and adaptor protein that regulates survival of mature endothelial cells and vascular development.Here we show that EPC dysfunction in patients with CAD is paralleled by down-regulation of ILK while restoration of ILK expression rescues the migratory defect of CAD-EPCs. Human EPCs transduced with dominant-negative ILK (DN-ILK) display significantly reduced expression of CD34+/VEGFR-2+, DiI-Ac-LDL uptake, and Ulex europaeus lectin binding. Mechanistically, DN-ILK-transfected EPCs are characterized by decreased proliferation, while proliferation is increased in wild-type ILK-transfected EPCs. These effects are paralleled by changes in cyclin D1 expression, colony forming units, and cytoskeletal rearrangement. Functionally, ILK is necessary and sufficient for SDF-1-triggered migration and adhesion in EPCs.These data extend current knowledge about the role of ILK in EPC biology and implicate ILK as a therapeutic target in CAD.  相似文献   

16.
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy.  相似文献   

17.
Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.  相似文献   

18.
目的:研究冠状动脉严重狭窄稳定型心绞痛(Stable angina pectoris, SPA)患者循环内皮祖细胞(endothelial progenitor cells, EPCs)及基质细胞衍生因子(SDF)-1-alpha与冠状动脉侧支循环(CCC)形成的相关性,以期为治疗冠心病提供新的思路。方法:选择 2012 年8 月到2014 年12月在我院就诊的88 例冠状动脉严重狭窄的稳定型心绞痛患者(CCC 良好40 例、不良48 例),均采集 外周血测定EPC 数量、体外生成血管能力,并用ELISA 法检测其血浆SDF-1alpha 水平,采用直线相关和Pearson 检验分析CCC良好 与不良者各指标间及与CCC 分级的相关性;将所有入选病例随机分为6 组,并分离外周血单个核细胞并分别加入不同的培养 液,培养7 天后体外测定EPCs 数量以及生成血管的能力,并通过ELISA 法检测培养液上清中VEGF 的蛋白水平。结果:CCC 不 良组EPCs 数量、体外生成血管能力及SDF-1-alpha水平均明显低于CCC 良好组(P<0.05)。体外生成血管能力、循环EPCs 数量以及 SDF-1alpha水平均与CCC分级呈现显著的正相关性(r =0.72、0.67、0.79,均P<0.05);循环EPCs 数量、SDF-1alpha水平以及体外生成血 管能力亦均呈现显著正相关性(r =0.78、0.62,均P<0.05)。与PBS、SDF-1alpha+ AMD3100 及SDF-1alpha+ KI8751 干预物质比较,SDF-1琢 能够呈剂量依赖性的明显提高EPCs 数量、增强其体外生成血管的能力及VEGF水平(P<0.05)。结论:冠状动脉严重狭窄稳定型 心绞痛患者循环EPCs及SDF-1琢与CCC 形成有关,VEGF可能参与该过程。  相似文献   

19.

Background

Kidney transplantation (RTx) leads to amelioration of endothelial function in patients with advanced renal failure. Endothelial progenitor cells (EPCs) may play a key role in this repair process. The aim of this study was to determine the impact of RTx and immunosuppressive therapy on the number of circulating EPCs.

Methods

We analyzed 52 RTx patients (58±13 years; 33 males, mean ± SD) and 16 age- and gender-matched subjects with normal kidney function (57±17; 10 males). RTx patients received a calcineurin inhibitor (CNI)-based (65%) or a CNI-free therapy (35%) and steroids. EPC number was determined by double positive staining for CD133/VEGFR2 and CD34/VEGFR2 by flow cytometry. Stromal cell-derived factor 1 alpha (SDF-1) levels were assessed by ELISA. Experimentally, to dissociate the impact of RTx from the impact of immunosuppressants, we used the 5/6 nephrectomy model. The animals were treated with a CNI-based or a CNI-free therapy, and EPCs (Sca+cKit+) and CD26+ cells were determined by flow cytometry.

Results

Compared to controls, circulating number of CD34+/VEGFR2+ and CD133+/VEGFR2+ EPCs increased in RTx patients. There were no correlations between EPC levels and statin, erythropoietin or use of renin angiotensin system blockers in our study. Indeed, multivariate analysis showed that SDF-1 – a cytokine responsible for EPC mobilization – is independently associated with the EPC number. 5/6 rats presented decreased EPC counts in comparison to control animals. Immunosuppressive therapy was able to restore normal EPC values in 5/6 rats. These effects on EPC number were associated with reduced number of CD26+ cells, which might be related to consequent accumulation of SDF-1.

Conclusions

We conclude that kidney transplantation and its associated use of immunosuppressive drugs increases the number of circulating EPCs via the manipulation of the CD26/SDF-1 axis. Increased EPC count may be associated to endothelial repair and function in these patients.  相似文献   

20.
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti‐inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009 ]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood‐derived AC133+ cells that produce functional EPC progenies. Decursin dose‐dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle‐shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin‐2, angiopoietin receptor Tie‐2, Flk‐1 (vascular endothelial growth factor receptor‐2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose‐dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor‐induced mobilization of circulating EPCs (CD34 + /VEGFR‐2+ cells) from bone marrow and early incorporation of Dil‐Ac‐LDL‐labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild‐type‐ or bone‐marrow‐transplanted mice. Accordingly, decursin attenuated EPC‐derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. J. Cell. Biochem. 113: 1478–1487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号