首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological role of transforming growth factor-alpha (TGF-alpha) in basal and hormone-stimulated proliferation of primary human and rat mammary tumor cells was studied using antibodies against TGF-alpha and its receptor. A monoclonal antibody, MAb-425 against human EGF receptor was added to in vitro soft agar, clonogenic cultures of human breast carcinoma cells under basal and estradiol(E2)-stimulated conditions. The antibody had an antagonist effect on colony growth in 4 of 10 tumors and an agonist effect in 4 (72 and 153% of control). E2-stimulated colony growth in 5 tumors (167% of control) and the antibody blocked E2-stimulation in 3 of the 5. Inhibition of E2-stimulated growth in 3 and basal growth in 4 other tumors by the EGF receptor antibody suggest that endogenously secreted TGF-alpha has a role as an autocrine/paracrine growth factor in constitutive and E2-stimulated tumor cell proliferation in a majority of human tumors. A polyclonal antibody against TGF-alpha was used to study the role of TGF-alpha in E2-, prolactin(Prl)- and progesterone(Prog)-stimulated proliferation of NMU(nitrosomethylurea)-induced rat mammary tumor cells under similar culture conditions. TGF-alpha, E2, Prl and Prog stimulated colony growth equally to 176, 187, 168 and 181% of control. The antibody produced significant and similar inhibition of TGF-alpha and E2-stimulated growth (95 and 83%). In contrast, inhibition of Prl- and Prog-stimulated growth by the antibody was only 24 and 37%. The TGF-alpha ligand antibody did not have an agonist or antagonist effect when added alone. Thus, TGF-alpha seems to be a major stimulatory growth factor mediating E2-induced tumor cell proliferation in rat mammary tumors. It is less important in Prl- and Prog-induced tumor growth and not essential for basal growth in these tumors. We conclude that TGF-alpha is a biologically important autocrine/paracrine growth factor in primary human breast cancer cell proliferation and in E2-induced rat mammary tumor growth.  相似文献   

2.
EGF and TGF-alpha induce an equipotent stimulation of fibroblast migration and proliferation. In spite of their homologous structure and ligation by the same receptor (EGFR), we report that their respective motogenic activities are mediated by different signal transduction intermediates, with p70(S6K) participating in EGF signalling and phospholipase Cgamma in TGF-alpha signalling. We additionally demonstrate that EGF and TGF-alpha motogenic activities may be resolved into two stages: (a) cell "activation" by a transient exposure to either cytokine, and (b) the subsequent "manifestation" of an enhanced migratory phenotype in the absence of cytokine. The cell activation and manifestation stages for each cytokine are mediated by distinct matrix-dependent mechanisms: motogenetic activation by EGF requires the concomitant functionality of EGFR and the hyaluronan receptor CD44, whereas activation by TGF-alpha requires EGFR and integrin alphavbeta3. Manifestation of elevated migration no longer requires the continued presence of exogenous cytokine and functional EGFR but does require the above mentioned matrix receptors, as well as their respective ligands, i.e., hyaluronan in the case of EGF, and vitronectin in the case of TGF-alpha. In contrast, the mitogenic activities of EGF and TGF-alpha are independent of CD44 and alphavbeta3 functionality. These results demonstrate clear qualitative differences between EGF and TGF-alpha pathways and highlight the importance of the extracellular matrix in regulating cytokine bioactivity.  相似文献   

3.
A431 cells express high numbers of epidermal growth factor (EGF) receptors and produce a ligand for these receptors, transforming growth factor-alpha (TGF-alpha). We have obtained evidence that the EGF receptors on these cells may be activated through an "autocrine" pathway by ligand and have investigated whether activation of phosphorylation of the receptor by the endogenously produced TGF-alpha occurs intracellularly or at the cell surface. When A431 cells were cultured under serum-free conditions, in the absence of exogenous ligand, EGF receptors were found to have a basal level of phosphorylation. When cells were labeled by culturing with 32Pi in the continuous presence of monoclonal antibodies that block binding of TGF-alpha to the EGF receptor, phosphorylation decreased to 30 +/- 10% of the basal level. This reduction could not be accounted for by the decrease in receptor content attributable to down-regulation and catabolism of EGF receptors that resulted from the binding of anti-receptor monoclonal antibodies. The reduction in receptor phosphorylation mediated by antibody was accompanied by the accumulation of increased levels of secreted TGF-alpha species in the culture medium. We also pulse-labeled A431 cells for 15 min with [35S]cysteine and immunoprecipitated the cell lysate with anti-phosphotyrosine antibody after various chase periods. Tyrosine-phosphorylated EGF receptor became detectable after 40 min of chase and reached a maximum after 4-6 h; these times are in agreement with the intervals required for EGF receptors to reach the cell surface after synthesis and then to achieve maximal expression. In addition, only the 170-kDa, mature EGF receptor species, and not the 160-kDa intracellular precursor, was immunoprecipitated with the anti-phosphotyrosine antibody. The results of these pulse-chase experiments and the finding that anti-receptor monoclonal antibody can block receptor phosphorylation suggest that activation of EGF receptors can result from the binding of an endogenous ligand (presumably TGF-alpha), which occurs at the cell surface and not during receptor biosynthesis and intracellular processing.  相似文献   

4.
We have examined the expression of mRNAs for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), EGF receptor (EGFR), PDGF-A chain (PDGFA), PDGF-B chain (PDGFB) and PDGF receptor (PDGFR) genes in seven human colorectal carcinoma cell lines and 18 human colorectal carcinomas. In surgically resected specimens of the 18 colorectal tumors, TGF-alpha, EGFR, PDGFA, PDGFB and PDGFR mRNAs were detected at various levels in 15 (83%), 9 (50%), 18 (100%), 8 (44%) and 12 (67%), respectively. They were also detected in normal tissues. Interestingly, EGF mRNA was detected in only five (28%) of the tumors, but not in normal mucosa. Expression of EGF was also confirmed immunohistochemically in tumor cells. Of the five tumors expressing EGF, four expressed EGFR mRNA and showed a tendency to invade veins and lymphatics. All the colorectal carcinoma cell lines expressed TGF-alpha mRNA, and five cell lines expressed EGFR mRNA simultaneously. Production of TGF-alpha protein by DLD-1 and CoLo320DM cells was confirmed by TGF-alpha specific monoclonal antibody binding assay. The spontaneous 3H-thymidine uptake by DLD-1 was suppressed by an anti-TGF-alpha monoclonal antibody. PDGFA and PDGFB mRNA were also expressed in four cell lines, but PDGFR and EGF mRNA was not detected. These results suggest that human colorectal carcinomas express multi-loops of growth factors and that TGF-alpha produced by tumor cells functions as an autocrine growth factor in human colonic carcinoma.  相似文献   

5.
We have previously reported that both 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF) can stimulate the synthesis rate of EGF receptors. We now show that the MDA468 breast cancer cells express the mRNA for the EGF-like molecule, transforming growth factor-alpha (TGF-alpha), and demonstrate that TPA or EGF cause an accumulation of both EGF receptor and TGF-alpha mRNA. The levels of EGF receptor mRNA paralleled our earlier protein data, with peak accumulations of 2-3-fold with 10(-9) M EGF and 3-5-fold with 100 ng/ml TPA seen between 6 and 8 h. A 7-fold accumulation of TGF-alpha mRNA was seen following 4 h of treatment with TPA, and a 2-fold accumulation was seen after 8 h with EGF. These changes in EGF receptor and TGF-alpha mRNAs were observed in the absence of any change in the mRNA level of the alpha-subunit of hexosaminidase A (a lysosomal enzyme), demonstrating some degree of specificity. Detectable quantities of immunoreactive TGF-alpha accumulated in the cell culture medium of MDA468 cell treated with the blocking anti-EGF receptor monoclonal antibody B1D8 while no immunoreactive TGF-alpha was detected in the medium of cells with unblocked receptors. The concentration of B1D8 used was sufficient to block the binding of exogenously added 125I-EGF to undetectable levels but had only minor effects on cell growth and no effect on the expression of the TGF-alpha and EGF receptor mRNA.  相似文献   

6.
To elucidate the relationship between epidermal growth factor (EGF)/transforming growth factor (TGF-alpha) and estradiol-17 beta (E) in cell proliferation, we examined their effects on the breast cancer cell line, CAMA-1. While E was able to consistently induce cell proliferation under a variety of experimental conditions, EGF/TGF-alpha was without effect. Despite the presence of the receptor (EGFR) gene, mature EGFR protein and mRNA were not detected by radioreceptor assay, 35S Met-labelling, and the Intron Differential RNA/PCR method under conditions in which cells remain responsive to E. Furthermore, TGF-alpha is not an autocrine factor in CAMA-1 cells. We demonstrated unequivocally that EGF/TGF-alpha interaction with EGFR is not an obligatory event in mediating estrogen-stimulated cell proliferation.  相似文献   

7.
Epidermal growth factor (EGF) receptor ligands such as EGF and transforming growth factor-alpha (TGF-alpha) play an important role in controlling the proliferation, survival, morphology, and motility of colonic epithelial cells. There is also increasing evidence that growth factors and extracellular matrix (ECM) proteins cooperate to regulate these cellular processes. We have reported previously that autocrine TGF-alpha and an unidentified ECM protein in the serum-free conditioned medium of the human colon carcinoma cell line LIM1215 synergize to induce spreading of these cells in low-density cultures. We have now purified the ECM protein secreted by LIM1215 cells and show that it synergizes with EGF to induce spreading of LIM1215 cells and other human cell lines from the colon and other tissues. The purified ECM migrated as a single protein band with an apparent molecular mass of approximately 800 kDa on SDS-PAGE under nonreducing conditions and, under reducing conditions, as three protein bands of approximately 360, 210, and 200 kDa. Immunoblotting experiments and mass spectrometry analysis of tryptic digests on the purified protein identified the 360-, 210-, and 200-kDa protein bands as laminin alpha5, beta1, and gamma1 chains, respectively, indicating that LIM1215 cells secrete laminin-10 (alpha5 beta1 gamma1). In serum-free medium, LIM1215 cells adhere to laminin-10 primarily via alpha2 beta1 and alpha3 beta1 integrin receptors. EGF-induced spreading of LIM1215 cells on laminin-10 is partially inhibited by pretreatment of the cells with blocking antibodies directed against integrin alpha3 or beta1 but not alpha2, alpha6, or beta4 subunits. Spreading is almost completely inhibited by blocking alpha3 + alpha2, alpha3 + alpha6, or beta1 + beta4 integrin chains and results in cell death. Increased spreading in the presence of EGF correlates with up-regulation of alpha6 beta4 integrins in these cells after exposure to EGF. These results indicate that colon cancer cells attach and spread on laminin-10 via multiple integrin receptors and suggest a critical role for alpha3 beta1 integrins in the spreading response. Together, our results support the concept that the adhesive properties of colon cancer cells are modulated by autocrine production of TGF-alpha and laminin-10 and autocrine induction of appropriate integrins.  相似文献   

8.
Estrogen stimulates the proliferation of pituitary cells, in particular mammotrophs. The present study was designed to clarify involvement of transforming growth factor alpha (TGF-alpha) in the estrogen-induced growth of mouse pituitary cells in vitro. Anterior pituitary cells obtained from ICR male mice were cultured in a primary, serum-free culture system. Proliferation of pituitary cells was detected by monitoring the cellular uptake of a thymidine analogue, bromodeoxyuridine. Secretory cell types were immunocytochemically determined. Treatment with TGF-alpha (0.1 and 1 ng/ml) for 5 days stimulated cell proliferation. Since TGF-alpha binds to the epidermal growth factor (EGF)-receptor, this action may be exerted through this receptor. Estradiol-17beta (E2, 10(-9) M) stimulated proliferation of mammotrophs. RG-13022, an EGF receptor inhibitor, reduced the cell proliferation induced by EGF or E2, showing that the EGF receptor was involved in this induction of mammotroph growth. Treatment with TGF-alpha antisense oligodeoxynucleotide (ODN) inhibited the cell proliferation induced by E2, but treatment with EGF antisense ODN did not. Dual detection of TGF-alpha mRNA and growth hormone by in situ hybridization and fluorescence-immunocytochemistry demonstrated that TGF-alpha mRNA was detected in most somatotrophs. Our recent RT-PCR analysis revealed that E2 stimulated TGF-alpha-mRNA and EGF-receptor mRNA expression. These results indicate that TGF-alpha produced in somatotrophs mediates the stimulatory effect of estrogen on pituitary cell proliferation in a paracrine manner, and that EGF-receptor expression is stimulated by estrogen. These findings indicate that intrapituitary cell-to-cell interaction plays an important role in the control of pituitary secretory cells.  相似文献   

9.
Estrogen-stimulated growth of the human mammary adenocarcinoma cell line MCF-7 is significantly inhibited by monoclonal antibodies to the epidermal growth factor (EGF) receptor that act as antagonists of EGF's mitogenic events by competing for high-affinity EGF receptor binding sites. These antibodies likewise inhibit the EGF or transforming growth factor-alpha (TGF-alpha)-stimulated growth of these MCF-7 cells. An analogous pattern of specific EGF or TGF-alpha growth inhibitory activity was obtained using a synthetic peptide analog encompassing the third disulfide loop region of TGF-alpha, but containing additional modifications designed for increased membrane affinity [( Ac-D-hArg(Et)2(31),Gly32,33]HuTGF-alpha(31-43)NH2). The growth factor antagonism by this synthetic peptide was specific in that it inhibited EGF, TGF-alpha, or estrogen-stimulated growth of MCF-7 cells but did not inhibit insulin-like growth factor-1 (IGF-1)-stimulated cell growth. Altogether, these results suggest that a significant portion of the estrogen-stimulated growth of these MCF-7 cells is mediated in an autocrine/paracrine manner by release of EGF or TGF-alpha-like growth factors. The TGF-alpha peptide likewise inhibited EGF- but not fibroblast growth factor (FGF)- or platelet-derived growth factor (PDGF)-stimulated growth of NIH-3T3 cells in completely defined media; but had no effect on growth or DNA synthesis of G0-arrested cells, nor did it effect growth of NR-6 cells, which are nonresponsive to EGF. Although this synthetic peptide did not directly compete with EGF for cell surface receptor binding, it exhibited binding to a cell surface component (followed by internalization), which likewise was not competed by EGF. The peptide did not directly inhibit EGF-stimulated phosphorylation of the EGF receptor, nor did it inhibit phosphorylation of an exogenous substrate, angiotensin II, by activated EGF receptor. The TGF-alpha peptide did, however, affect the structure of laminin as manifested by laminin self-aggregation; this affect on laminin may, in turn, have a modulatory effect on EGF-mediated cell growth.  相似文献   

10.
11.
Mitogens of the EGF family may play an important role in regulating the proliferation of airway epithelial cells (AEC). We examined the production of autocrine mitogenic activity by mouse AEC cultured from explants of tracheal tissue. DNA synthesis by growth-arrested AEC was stimulated by conditioned media from cells maintained in serum-free culture without exogenous growth factors. The mitogenic activity was blocked by a specific inhibitor of the EGF receptor tyrosine kinase. Furthermore, conditioned media from AEC contained molecular species that could compete with radiolabeled EGF in a receptor binding assay. However, mitogenic activity was not blocked by neutralizing antibodies to EGF or to transforming growth factor-, but was partly inhibited by co-incubation with heparin, suggesting that it might be due to a heparin-binding member of the EGF family. The activity was potentiated by co-incubation with IGF-1, analogous to the potentiation by IGF-1 of the mitogenic activity of EGF for AEC. Moreover, the autocrine mitogen produced by AEC exhibited cooperative interaction with the mitogenic activity in conditioned media from growth factor-deprived mouse lung fibroblasts, consistent with the hypothesis that interactions with mesenchymal cells could influence the proliferation of AEC in vivo.  相似文献   

12.
Basic fibroblast growth factor (bFGF) has been shown to be mitogenic to many different eukaryotic cell lines of mesodermal and neuroectodermal origin. Addition of exogenous bFGF to the chemically defined media of five characterized human colon tumor cell lines, cultured in the absence of epidermal growth factor (EGF), resulted in stimulation of growth from 24% to 146% in four of five cell lines, as measured by a colorimetric MTT assay. A positive dose-response relationship was observed when colon cells were treated with bFGF concentrations from 1 pM to 1 nM. bFGF showed a cumulative effect with EGF in stimulating the proliferation of colon tumor cells. The growth-inhibitory effect of exogenous transforming growth factor-beta (TGF-beta) on these cells was abolished by bFGF. When colon tumor cells were examined on immunoblots with a fibroblast growth factor (FGF) receptor-specific antibody, bands were detected at apparent molecular weights of 131 and 145 kDa. Conditioned media and cell lysates from the same human colon tumor cell lines were immunoprecipitated with a bFGF-specific antibody. An immunoreactive band was detected that comigrated with authentic human recombinant bFGF (16 kDa). Furthermore, preabsorption of anti-bFGF antibody with authentic ligand blocked immunodetection of the 16 kDa band on immunoblots. Documentation of a bFGF response, receptor, and ligand expression in human colon tumor cell lines is novel, and may represent a more widespread role for FGF that extends to epithelial cells and tumors of endodermal germ layer origin. The expression of both ligand and receptors by these cells indicates that bFGF could be involved in their growth regulation at the autocrine level.  相似文献   

13.
EGF induces receptor down-regulation with no receptor recycling in KB cells   总被引:3,自引:0,他引:3  
Several ligands, including epidermal growth factor (EGF), have been found to negatively modulate or down-regulate their specific plasma membrane receptors. Using both 125I-EGF and a monoclonal antibody against the EGF-receptor (EGF-R1), we studied the down-regulation of the EGF-receptor in the human adenocarcinoma cell line KB. The results presented here demonstrate that incubating KB cells at 37 degrees C with EGF rapidly decreases the number of plasma membrane EGF-receptors. In addition, there is a concomitant rise of equal magnitude in the number of EGF molecules taken up. The latter result argues strongly that there is negligible recycling of the EGF-receptor in KB cells and that the major portion of internalized EGF-receptor complexes are transported to lysosomes and subsequently degraded. The fate of the EGF-receptor is markedly different from that of receptors not subject to down-regulation. The biochemical signals that operate to regulate such diverse receptor traffic in cells remains to be elucidated.  相似文献   

14.
Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti–EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti–EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated.  相似文献   

15.
M Umeda 《Human cell》1991,4(4):285-290
P3 cell lines can be grown in protein- and lipid-free synthetic medium. Using the P3 cell culture, we have shown that these cells produce autocrine growth factors and cell-substrate attachment factors. Because the cultured cells produce proteinase-inhibitor, spent medium is applicable for inactivating the action of trypsin at the time of cell passage. In addition, we have tried to cultivate various types of cells in serum-free media on the market (ASF103, ASF104 and GIT). Many cell lines can grow in these media, but inoculum dependency is observed in some cell lines. Production of monoclonal antibody by a hybridoma cell line is rather enhanced in these media. These media can be preserved at 4 degrees C or -20 degrees C for a relatively long period. These media added with EGF support the growth of Syrian hamster embryo cells at an early passage. The growth of human diploid fibroblasts in GIT medium added with EGF is a little less compared in a serum-containing medium.  相似文献   

16.
A murine monoclonal antibody (No. 425) raised against human A431 carcinoma cells specifically immunoprecipitates the 170,000 molecular weight epidermal growth factor (EGF)-receptor from extracts of A431 cells as well as from extracts of human placenta and cultured fibroblasts, but does not recognize the murine receptor. Binding to the external domain of the human EGF-receptor was indicated by indirect immunofluorescent staining of fixed nonpermeable cells. The antibody binds to both glyco- and aglycoreceptor forms, indicating that the epitope is a part of the polypeptide chain. Binding of the antibody to the receptor is conformation dependent; i.e., denatured receptors lacking EGF-binding activity are not recognized by the antibody. The results of antibody binding studies indicate that the epitope is closely linked to the EGF binding active site, and is common to both high- and low-affinity EGF-receptors. Interaction of this epitope with the antibody inhibits EGF binding and bioactivity, and triggers receptor down-regulation, but does not generate EGFlike kinase-stimulatory or mitogenic responses either in vitro or in vivo. The antibody was tested for its ability to bind to domain-sized fragments of the 170-kDa EGF-receptor. It can recognize both the proteolytically generated 110-kDa EGF binding peptide, and a soluble 100-kDa EGF-receptor secreted by A431 cells. This indicates that the epitope recognized this antibody retains its conformation after proteolytic separation of the EGF binding domain from the rest of the receptor molecule.  相似文献   

17.
The mitogenic activity of several growth factors on androgen responsive LNCaP human prostate tumor cells was studied. A two-fold stimulation of cell proliferation was observed after a culture period of 6 days in 1 ng EGF/ml, 10 ng TGF-alpha/ml or 20 ng basic FGF/ml. TGF-beta (0.02 ng/ml), which did not affect cell proliferation when added alone to the culture medium, inhibited the EGF- and TGF-alpha-induced growth. The synthetic androgen R1881 (0.1 nM) stimulated cell proliferation three-fold and increased the number of EGF receptors from 11500 to 28500 sites/cell. One of the mechanisms involved in androgen action on these cells is therefore an increased EGF receptor expression and increased sensitivity to EGF. TGF-beta did not directly affect androgen-responsive growth but inhibited the synergistic effect of EGF. A considerable expression of TGF alpha (precursors) could be demonstrated on the cells by immunohistochemical staining. However the staining intensity was not affected by androgens. These results make it less likely that androgen-responsive growth is mediated by regulation of secretion of an EGF- or TGF alpha-like activity, which in turn acts in an autocrine manner to stimulate growth. Estrogens, progestagens and antiandrogens do not inhibit androgen responsive growth of LNCaP cells but have striking growth stimulatory effects, increase EGF receptor level and increase acid phosphatase secretion. LNCaP cells contain a modified androgen receptor system with respect to both steroid specificity and antiandrogen sensitivity. It has recently been shown that the stimulatory effects are due to a mutated amino acid in the steroid binding domain of the androgen receptor.  相似文献   

18.
In this study, we sought to determine the extent to which mitogenic growth factors affect the survival and development of cloned mouse embryos in vitro. Cloned embryos derived by intracytoplasmic nuclear injection (ICNI) of cumulus cell nuclei into enucleated oocytes were incubated in culture media supplemented with EGF and/or TGF-alpha for 4 days. Compared to control, treatment with either growth factor significantly increased the blastocyst formation rate, the total number of cells per blastocyst, the cell ratio of the inner cell mass and the trophectoderm (ICM:TE ratio), and EGF-R protein expression in cloned embryos. In most instances these effects were enhanced in cloned embryos when EGF and TGF-alpha were combined. Although fewer blastocysts developed from cloned than from fertilized one-cell stage embryos, growth factor treatment appeared to have the greatest effect on cloned embryos. These results demonstrate that mitogenic growth factors significantly enhance survival and promote the preimplantation development of cloned mouse embryos.  相似文献   

19.
The monoclonal antibody to the epidermal growth factor (EGF) receptor was generated after fusion of PAI myeloma cells with immunized BALB/c mouse spleen cells, using intact A431 epidermoid carcinoma cells as an immunogen. The antibody, denoted 5A9, is an IgG, which recognizes a protein with molecular mass 170 kDa during immunoblot analysis, immunoprecipitates phosphoprotein with molecular mass 170 kDa from the membrane preparations of A431 cells, and, according to immunofluorescence experiments, is distributed in the cell similar to the EGF-rhodamine conjugate. It is concluded that the produced antibodies are specific to EGF-receptor. At the same time the 5A9 (50 nM) do not compete with EGF for binding with high and low affinity receptors. They fail to induce internalization of the EGF-receptor and do not exert influence on intracellular degradation of EGF-receptor. Monoclonal antibodies 5A9 are also unable to inhibit the EGF-induced protein kinase activity of the receptor and do not stimulate protein kinase activity by themselves. Thus, the prepared monoclonal antibodies can be used to register the EGF-receptor cellular localization without affecting biologic activity of the receptor.  相似文献   

20.
The 1246-3A cell line is an insulin-independent variant derived from the adipogenic cell line 1246. Data presented in this paper indicate that the 1246-3A cell line releases in its culture medium two types of transforming growth factors, TGF-alpha- and TGF-beta-like polypeptides, and a growth inhibitor. TGF-alpha like polypeptide eluted from Biogel P60 column into two fractions with an apparent molecular weight of 50 kDa and 13 kDa. These high-molecular-weight TGF-alpha-like factors competed with 125I-EGF for binding to epidermal growth factor (EGF) receptors and were specifically immunoprecipitated by incubation with antirat TGF-alpha antibody, not by incubation with anti-EGF antibody. Both fractions promoted anchorage-independent growth of normal rat kidney NRK cells in the absence of EGF and stimulated DNA synthesis in quiescent Balb/c-3T3 cells in a fashion similar to EGF and synthetic TGF-alpha. In addition to secreting TGF-alpha-like polypeptides, 1246-3A cells produce TGF-beta. This polypeptide, eluted from Biogel P60 chromatography with an apparent molecular weight of 25 kDa, promoted anchorage-independent growth of NRK cells in the presence of EGF and was growth inhibitory for Chinese hamster lung fibroblasts CCL 39 cells. Interestingly, another growth inhibitory activity was detected in Biogel P60 fractions and eluted with an apparent molecular weight of between 9.5-11 kDa. This fraction was different from TGF-beta and TGF-alpha as determined by specific radioreceptor competition assays. TGF-alpha and TGF-beta-like polypeptides could represent autocrine growth stimulators for the insulin-independent 1246-3A cells and act in synergy with insulin-related factor (IRF) for an optimal stimulation of 1246-3A cell proliferation in serum-free medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号