首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study was to determine the pathways by which horseradish peroxidase (HRP) can cross the endothelium of muscle capillaries. Specimens of mouse diaphragm were fixed for cytochemical analysis at various intervals after intervenous injection of 0.5 mg HRP, at 4 min after intervenous injection of varied amounts of HRP, and at 4 min after intervenous injections in various volumes of isotonic NaCl. Our findings indicate that endothelial junctions serve as a barrier which may allow passage of very limited amounts of HRP. They also suggest that endothelial vesicles transfer HRP from the capillary lumen to the pericapillary interstitium as well as in the reverse direction. Increasing the volume of solution injected to approximately 30% of total blood volume did not increase the amount of HRP that left the capillary lumen. Our results with HRP do not provide clearcut evidence that endothelial junctions are the site of the small pore.  相似文献   

2.
PERMEABILITY OF MUSCLE CAPILLARIES TO EXOGENOUS MYOGLOBIN   总被引:17,自引:11,他引:6       下载免费PDF全文
Whale skeletal muscle myoglobin (mol wt 17,800; molecular dimensions 25 x 34 x 42 Å) was used as a probe molecule for the pore systems of muscle capillaries. Diaphragms of Wistar-Furth rats were fixed in situ at intervals up to 4 h after the intravenous injection of the tracer, and myoglobin was localized in the tissue by a peroxidase reaction. Gel filtration of plasma samples proved that myoglobin molecules remained in circulation in native monomeric form. At 30–35 s postinjection, the tracer marked ~75% of the plasmalemmal vesicles on the blood front of the endothelium, 15% of those located inside and none of those on the tissue front. At 45 s, the labeling of vesicles in the inner group reached 60% but remained nil for those on the tissue front. Marked vesicles appeared on the latter past 45 s and their frequency increased to ~80% by 60–75 s, concomitantly with the appearance of myoglobin in the pericapillary spaces. Significant regional heterogeneity in initial labeling was found in the different segments of the endothelium (i.e., perinuclear cytoplasm, organelle region, cell periphery, and parajunctional zone). Up to 60 s, the intercellular junctions and spaces of the endothelium were free of myoglobin reaction product; thereafter, the latter was detected in the distal part of the intercellular spaces in concentration generally equal to or lower than that prevailing in the adjacent pericapillary space. The findings indicate that myoglobin molecules cross the endothelium of muscle capillaries primarily via plasmalemmal vesicles. Since a molecule of this size is supposed to exit through both pore systems, our results confirm the earlier conclusion that the plasmalemmal vesicles represent the large pore system; in addition, they suggest that the same structures are, at least in part, the structural equivalent of the small pore system of this type of capillaries.  相似文献   

3.
INTESTINAL CAPILLARIES : I. Permeability to Peroxidase and Ferritin   总被引:28,自引:14,他引:14       下载免费PDF全文
Horseradish peroxidase (mol. diam. 50 A) and ferritin (mol. diam. 110 A) were used as probe molecules for the small and large pore system, respectively, in blood capillaries of the intestinal mucosa of the mouse. Peroxidase distribution was followed in time, after intravenous injection, by applying the Graham-Karnovsky histochemical procedure to aldehyde-fixed specimens. The tracer was found to leave the plasma rapidly and to reach the pericapillary spaces 1 min post injection. Between 1 min and 1 min 30 sec, gradients of peroxidase reaction product could be demonstrated regularly around the capillaries; their highs were located opposite the fenestrated parts of the endothelium. These gradients were replaced by even distribution past 1 min 30 sec. Ferritin, followed directly by electron microscopy, appeared in the pericapillary spaces 3–4 min after i.v. injection. Like peroxidase, it initially produced transient gradients with highs opposite the fenestrated parts of the endothelium. For both tracers, there was no evidence of movement through intercellular junctions, and transport by plasmalemmal vesicles appeared less efficient than outflow through fenestrae. It is concluded that, in the blood capillaries of the inintestinal mucosa, the diaphragms of the endothelial fenestrae contain the structural equivalents of the small pore system. The large pore system seems to be restricted to a fraction of the fenestral population which presumably consists of diaphragm-free or diaphragm-deficient units.  相似文献   

4.
Summary The blood capillaries in the stria vascularis and the spiral ligament of guinea pigs were studied by electron microscopy with freeze-fracture and thin section methods, including tracer experiments with horseradish peroxidase (HRP) and microperoxidase (MP). The endothelial cells of the capillaries of both tissues are connected by tight junctions, and contain about the same number of micropinocytotic vesicles. In cases of intravascular administration before fixation, both of the tracers stained the perivascular space and almost all endothelial vesicles in the stria vascularis. On the other hand, the perivascular space and many vesicles in the spiral ligament were unstained. The endothelial tight junctions in the stria vascularis prevented the penetration of HRP, but sometimes allowed the penetration of MP. Those of the spiral ligament were impermeable to both tracers. In cases of tracer administration after fixation, leakage spots of HRP from capillaries were sparsely located all over the stria vascularis. Transendothelial channels and isolated fenestrae formed by micropinocytotic vesicles were detected. It is concluded that the capillaries of the stria vascularis are similar to the muscle capillaries and to the capillaries of the elasmobranch brain, whereas those in the spiral ligament are similar to the brain capillaries of higher vertebrates.  相似文献   

5.
The transendothelial passage of horseradish peroxidase, injected intravenously into mice, was studied at the ultrastructural level in capillaries of cardiac and skeletal muscle. Peroxidase appeared to permeate endothelial intercellular clefts and cell junctions. Abnormal peroxidase-induced vascular leakage was excluded. Neutral lanthanum tracer gave similar results. The endothelial cell junctions were considered to be maculae occludentes, with gaps of about 40 A in width between the maculae, rather than zonulae occludentes. Some observations in favor of concurrent vesicular transport of peroxidase were also made. It is concluded that the endothelial cell junctions are most likely to be the morphological equivalent of the small pore system proposed by physiologists for the passage of small, lipid-insoluble molecules across the endothelium.  相似文献   

6.
A brief survey is given of current views correlating the ultrastructural and permeability characteristics of capillaries. Observations based on the use of peroxidase (mol wt 40,000), as an in vivo, and colloidal lanthanum, as an in vitro, ultrastructural tracer, are presented. In capillaries with "continuous" endothelium, the endothelial intercellular junctions are thought to be permeable to the tracers, and are regarded as maculae occludentes rather than zonulae occludentes, with a gap of about 40 A in width between the maculae. Some evidence for vesicular transport is also presented. It is inferred that the cell junctions are the morphological equivalent of the small-pore system, and the vesicles the equivalent of the large-pore system. Peroxidase does not apparently cross brain capillaries: the endothelial cell junctions are regarded as zonulae occludentes, and vesicles do not appear to transport across the endothelium. This is regarded as the morphological equivalent of the blood-brain barrier for relatively large molecules. The tracers appear to permeate the fenestrae of fenestrated capillaries, and the high permeability of these capillaries to large molecules is attributed to the fenestrae. Capillaries with discontinuous endothelium readily allow passage of the tracers through the intercellular gaps. A continuous basement membrane may act as a relatively coarse filter for large molecules. In general, the morphology of capillaries correlates well with physiological observations.  相似文献   

7.
The permeability of the newt cerebral capillaries to lanthanum ion has been studied after perfusion with mannitol solutions of increasing molarity. In the control specimens lanthanum deposits were limited to the luminal side of the capillaries and tracer did not spread to the pericapillary spaces due to the tight junctions. Treatment with hypertonic solutions of mannitol (0.25M, 0.5M, 1M) caused opening of the blood brain barrier with a progressive increase in lanthanum between the endothelial cell edges, in the basal lamina and in the extracellular spaces of the nervous parenchyma in relation to the molarity of the mannitol solution. The spread of lanthanum is probably due to opening of the tight junctions between the endothelial cells, since pinocytotic vesicles labelled with tracer were not evident.  相似文献   

8.
The structure of lymphatic capillaries in lymph formation.   总被引:11,自引:0,他引:11  
The lymphatic vascular system consists of endothelial lined vessels which begin as blind-end tubes or saccules that are located within the connective tissue areas. This system serves as a one-way drainage apparatus for the removal of diffusible substances as well as plasma proteins that escape the blood capillaries. If permitted to accumulate, these escaped components would deplete the circulatory system of its plasma colloids and disrupt the balance of forces responsible for the control of fluid movement and the exchange of gases and fluids across the blood vascular wall. The lymphatic capillaries are strategically placed and anatomically constructed to permit a continuous and rapid removal of the transient interstitial fluids, plasma proteins, and cells from the interstitium. Structurally the lymphatic capillaries consist of a continuous endothelium that is extremely attenuated over major aspects of its diameter, except in the perinuclear region which bulges into the lumen. These vessels lack a continuous basal lamina and maintain a close relationship with the adjoining interstitium by way of anchoring filaments. The adjacent cells are extensively overlapped and lack adhesion devices in many areas. When electron-opaque tracers are injected intravenously (i.e., horseradish peroxidase and ferritin), subsequent electron microscopic examination of tissues reveals the presence of tracer particles within the interstitium and the lymphatic capillary lumen. These particles gain access into the lymphatic capillaries via two major pathways: 1) the intercellular clefts of patent junctions and 2) plasmalemmal vesicles (pinocytotic vesicles). Another salient feature of the lymphatic endothelial cell includes the presence of numerous cytoplasmic filaments, which are similar in morphology to the actin filaments observed in a variety of cell types. The ultrastructural features of the lymphatic capillaries are discussed in relation to their role in the removal of interstitial fluids and particulate matter, and in the formation of lymph.  相似文献   

9.
Summary The rabbit Graafian follicles are encircled by a capillary network between the theca interna and the avascular membrana granulosa. After injection of an ovulatory dose of human chorionic gonadotrophin (HCG) the theca interna cells showed an increase in the amount of smooth endoplasmic reticulum, lipid droplets and mitochondria with tubular cristae. In addition, considerably more junctions, similar to the abutment nexuses of granulosa cells were found; annular nexuses also appeared. At 4 hours after injection of HCG a prominent oedema was evident in the theca interna layer, particularly in the apical region.Small fenestrations in the endothelium of the blood capillaries increased in amount after HCG injection, and close to the time of ovulation, large gaps or perforations, 1–3 in diameter, were found in the thin, distended part of the endothelial cells. The surrounding basement membrane became fragmented and partly lost, so that a seemingly free passage from the capillary lumen to the interstitium was eventually established. Leakage of fluid, causing interstitial oedema, presumably proceeds until the pressure in the pericapillary interstitium has risen to the pressure in the capillaries. Some hours before and up to ovulation the pericapillary interstitium has also broad communications with the cavity of the follicles. Therefore, both pressure and fluid can be passed from the capillaries-via the interstitium-to the follicle antrum. However, influx of fluid with subsequent follicle expansion and ovulation-at constant pressure-does not occur until the tensile strength of the follicle wall has decreased.This investigation was supported by grants from the Swedish Medical Besearch Council (Projects No. B72-12X-78-07A, B73-12X-78-08B and B74-12X-78-09C). The technical assistance of Miss Ingalis Fransson, Miss Kerstin Nilsson, and Mrs. Ulla-Britt Westman is greatly appreciated.  相似文献   

10.
The pathway followed by macromolecules across the wall of visceral capillaries has been studied by using a set of tracers of graded sizes, ranging in diameter from 100 A (ferritin) to 300 A (glycogen). Polysaccharide particles, i.e. dextran 75 (mol wt ~75,000; diam ~125 A), dextran 250 (mol wt 250,000; diam ~225 A), shellfish glycogen (diam ~200 A) and rabbit liver glycogen (diam ~300 A), are well tolerated by Wistar-Furth rats and give no vascular reactions ascribable to histamine release. Good definition and high contrast of the tracer particles were obtained in a one-step fixation—in block staining of the tissues by a mixture containing aldehydes, OsO4 and lead citrate in phosphate or arsenate buffer, pH 7.4, followed by lead staining of sections. The glycogens and dextrans used move out of the plasma through the fenestrae and channels of the endothelium relatively fast (3–7 min) and create in the pericapillary spaces transient (2–5 min) concentration gradients centered on the fenestrated sectors of the capillary walls. The tracers also gained access to the plasmalemmal vesicles, first on the blood front and subsequently on the tissue front of the endothelium. The particles are temporarily retained by the basement membrane. No probe moved through the intercellular junctions. It is concluded that, in visceral capillaries, the fenestrae, channels, and plasmalemmal vesicles, viewed as related parts in a system of dynamic structures, are the structural equivalent of the large pore system.  相似文献   

11.
The pathway by which intravenously injected ferritin molecules move from the blood plasma across the capillary wall has been investigated in the muscle of the rat diaphragm. At 2 min after administration, the ferritin molecules are evenly distributed in high concentration in the blood plasma of capillaries and occur within vesicles along the blood front of the endothelium. At the 10-min time point, a small number of molecules appear in the adventitia, and by 60 min they are relatively numerous in the adventitia and in phagocytic vesicles and vacuoles of adventitial macrophages. Thereafter, the amount of ferritin in the adventitia and pericapillary regions gradually increases so that at 1 day the concentration in the extracellular spaces approaches that in the blood plasma. Macrophages and, to a lesser extent, fibroblasts contain large amounts of ferritin. 4 days after administration, ferritin appears to be cleared from the blood and from the capillary walls, but it still persists in the adventitial macrophages and fibroblasts. At all time points examined, ferritin molecules within the endothelial tunic were restricted to vesicles or to occasional multivesicular or dense bodies; they were not found in intercellular junctions or within the cytoplasmic matrix. Ferritin molecules did not accumulate within or against the basement membranes. Over the time period studied, the concentration of ferritin in the blood decreased, first rapidly, then slowly, in two apparently exponential phases. Liver and spleen removed large amounts of ferritin from the blood. Diaphragms fixed at time points from 10 min to 1 day, stained for iron by the Prussian Blue method, and prepared as cleared whole mounts, showed a progressive and even accumulation of ferritin in adventitial macrophages along the entire capillary network. These findings indicate: (1) that endothelial cell vesicles are the structural equivalent of the large pore system postulated in the pore theory of capillary permeability; (2) that the basement membrane is not a structural restraint in the movement of ferritin molecules across the capillary wall; (3) that transport of ferritin occurs uniformly along the entire length of the capillary; and (4) that the adventitial macrophages monitor the capillary filtrate and partially clear it of the tracer.  相似文献   

12.
We report on the effect of the net charge of a tracer (ferritin) on its permeability in fenestrated capillaries of the brain. Our experiments show that the charge of this tracer actually influences its interaction with the endothelium. Three phases of tracer-endothelial interaction could be discriminated. Anionic and slightly cationic derivatives (pH 4.5-7.8) do not show any affinity to the luminal endothelial membrane. Ferritin derivatives with a pI value between 7.8 and 9.3 result in the labeling of the fenestrae without coating additional luminal plasmalemmal structures (i.e., coated pits and plasmalemmal vesicles). Tracers with a high positive net charge (pI greater than 9.3) led to their endocytotic uptake and extravasation by some transcytotic mechanism. Extravasated cationic ferritin accumulates in the endothelial basement membrane and binds to striated collagen fibrils. It is suggested that the pericapillary collagen fibrils of fenestrated brain capillaries act as a charge filter with respect to macromolecules.  相似文献   

13.
We investigated the mechanism by which diabetes renders the capillary endothelium more permeable to macromolecules in the lungs of short-term diabetic rats. We used quantitative immunocytochemistry (ICC) to comparatively assess the permeability of alveolar capillaries to serum albumin in diabetic and normoglycemic animals. The effect of diabetes on the population of endothelial caveolae was evaluated by morphometry and by ICC and immunochemical quantification of the amount of caveolin in the whole cell or associated with the purified endothelial plasma membrane. A net increase in the amount of serum albumin taken up by the plasmalemmal vesicles of alveolar endothelial cells and transported to the interstitium was documented in diabetic animals. Interendothelial junctions were not permeated by albumin molecules. The alveolar endothelial cells of hyperglycemic rats contain more caveolae (1.3-fold), accounting for a larger (1.5-fold) fraction of the endothelial volume than those of normal animals. The hypertrophy of the caveolar compartment is accompanied by overexpression of endothelial caveolin 1. Although the aggregated thickness of the endothelial and alveolar epithelium basement membranes increases in diabetes (1.3-fold), the porosity of this structure appears to be unchanged. Capillary hyperpermeability to plasma macromolecules recorded in the early phase of diabetes is explained by an intensification of transendothelial vesicular transport and not by the destabilization of the interendothelial junctions.  相似文献   

14.
The permeability of the alveolar-capillary membrane of newborn and adult mice to horseradish peroxidase (HRP) and catalase was studied by means of ultrastructural cytochemistry, and the permeability to ferritin was studied by electron microscopy. The influence of varying volumes of intravenously injected fluid on the rate of leakage of the tracers from pulmonary capillaries was examined. The tracers were injected intravenously and the mice were sacrificed at timed intervals. Experiments on newborn mice with intranasally instilled HRP were also done. The tissues were fixed in formaldehyde-glutaraldehyde fixative. Chopped sections were incubated in Graham and Karnovsky's medium for peroxidase and in a modification of this medium for catalase. Tissues were postfixed in OsO4 and processed for electron microscopy. In both newborn and adult mice, the ready passage of peroxidase through endothelial clefts was dependent on the injection of the tracer in large volumes of saline. When the tracer was injected in small volumes of saline, its passage through endothelial clefts was greatly reduced. Endothelial junctions of newborn mice were somewhat more permeable to HRP than those of adult mice. In all animals, alveolar epithelial junctions were impermeable to HRP. Catalase and ferritin did not pass through endothelial junctions. Intranasally instilled HRP in newborn mice was taken up by pinocytotic vesicles and tubules of flat alveolar cells.  相似文献   

15.
STUDIES ON THE PERMEABILITY OF LYMPHATIC CAPILLARIES   总被引:3,自引:0,他引:3       下载免费PDF全文
The passageway for interstitial fluids and large molecules across the connective tissue lymph interface has been investigated in dermal lymphatic capillaries in the ears of guinea pigs. Numerous endothelial cells overlap extensively at their margins and lack adhesion devices at many points. The observations suggest that these sites are free to move as a result of slight pressure changes. Immediately following interstitial injections of tracer particles (ferritin, thorium, carbon, and latex spheres), many of the overlapped endothelial cells are separated and thus passageways are provided between the interstitium and lymphatic lumen. Tracer particles also occur in plasmalemmal invaginations along both connective tissue and luminal fronts. All of the tracer particles accumulate within large autophagic-like vacuoles. Very few particles of ferritin are observed in the endothelium after 24 hr; however, the vesicles containing the nonprotein tracer particles (carbon, thorium, and latex) increase in size and content and remain within the lymphatic endothelial cells up to 6 months. The role of vesicles in the transport of large molecules and particles is discussed in relation to the accretion of tracer particles within large vesicles and autophagic-like vacuoles in the endothelial cytoplasm.  相似文献   

16.
Summary The permeability of fenestrated capillaries in the mouse pineal gland to proteins and peptides was demonstrated by means of ultrastructural tracers. Horseradish peroxidase (HRP) and microperoxidase (MP) were injected intravenously and allowed to circulate for approximately 30 s, 1 min, 5 min, 1 or 2h. The tissue was then fixed by vascular perfusion or by immersion with aldehydes. In all experiments a pronounced extravasation of HRP and MP occurred. Transendothelial vesicular transport seemed to have occurred across the fenestrated capillaries. The most pronounced tracer labeling of vesicles was found after 1 min of MP- or HRP-circulation. The vesicles were uncoated and more than 70 % of the HRP-and MP-containing vesicles exhibited diameters between 50 and 110 nm. Furthermore, three other transcapillary pathways taken by the tracers are suggested: 1) via intercellular junctions, 2) through fenestrae and 3) via channels formed by fusion of vesicles with the luminal and abluminal cell membranes. Based on these results, it is assumed that the capillaries in the mouse pineal gland are also permeable to peptides synthesized and secreted by the pineal gland.Part of this study was presented at the EMCELL-76 meeting, Copenhagen, 1976  相似文献   

17.
Horseradish peroxidase (HRP) was intravenously injected into guinea-pigs to ultrastructurally examine the permeability of the blood/air barrier. Adults were given 300 mg/kg of the tracer in a small volume of saline, anesthetized and sacrificed at intervals by either intratracheal filling or right ventricular perfusion with 3% glutaraldehyde. The reaction product had passed through endothelial clefts and accumulated in the interstitium as early as 1.5 min after injection. This same degree of penetration occurred with either fixation method used. Tight junctions between pneumocytes prevented passage of the reaction product into alveoli. Pinocytotic vesicles were numerous in both endothelial and epithelial cells, but did not significantly contribute to tracer transport. Ten minutes post-injection was selected as optimal for this model since the highest concentration of tracer was found in the tissues at this time.  相似文献   

18.
With the use of immunoelectron microscopy we have demonstrated the presence of lysosomal enzymes (acid alpha-glucosidase and glucocerebrosidase) and fragments of the 270 kDa receptor for mannose 6-phosphate and insulin-like growth factor II in blood plasma, plasmalemmal vesicles of endothelial cells and pericapillary spaces in human skeletal muscle tissue. At these locations, the three proteins colocalized with albumin known to be transported from the capillaries into the pericapillary spaces. Immunoblot analysis of plasma revealed the presence of relatively high molecular weight polypeptides in this material. These observations strongly suggest that high molecular weight species of lysosomal enzymes can pass the endothelial barrier in skeletal muscle tissue.  相似文献   

19.
Summary Brain capillaries and their permeability to intravenously injected horseradish peroxidase, HRP, (MW: 40,000) were examined electron-microscopically in an attempt to find a structural explanation for the poorly developed blood-brain barrier in the hagfish, Myxine glutinosa. In particular, it was the aim of this study to examine the role of the numerous endothelial vesicles and tubules in the transport of this tracer between blood and brain. Many of the vesicles and tubules were found to be in continuity with the luminal or abluminal surfaces, but tubules generating channels through the endothelial cells were never observed. The cleft between adjacent endothelial cells was obliterated by punctate junctions. HRP, which was allowed to circulate for up to 35 min, was not found in the basal lamina or in the surrounding brain parenchyma. Few of the luminal vesicles and tubules were marked by the tracer. In the intercellular cleft HRP was stopped by the junctions. It is concluded that the hagfish like other vertebrates has a blood-brain barrier to HRP, and the numerous vesicles and tubules occurring in hagfish brain endothelium are not involved in the transendothelial transport of this macromolecule.  相似文献   

20.
The blood-brain barrier in a reptile, Anolis carolinensis   总被引:1,自引:0,他引:1  
An electron microscopic study was made of the ultrastructure and permeability of the capillaries in the cerebral hemispheres of the lizard, Anolis carolinensis. The brain of Anolis is vascularized by a loop-type pattern consisting exclusively of arteriovenous capillary loops. The ultrastructure of the endothelium and the arrangement of the various layers from the capillary lumen to the central nervous tissue is similar to that of mammals. The endothelial cells form a continuous layer around the lumen and are joined by tight interendothelial junctions. The basal lamina of the endothelium is also continuous and encloses pericyte processes. The cells of the nervous tissue rest directly on the basal lamina of the capillary and are separated from each other by a 200 Å space. Intravenously injected horseradish peroxidase (MW 40,000) and ferritin (MW 500,000) were used to study the permeability of the capillaries. The entry of horseradish peroxidase and ferritin into the intercellular spaces of the brain is restricted by the tightness of the interendothelial junctions. No vesicular transport of either tracer occurs; however, ferritin does enter the endothelial cells in vacuoles. No tracer molecules are present in the basal lamina, pericytes, or nervous tissue. The different responses of the endothelial cell to the tracers used in this study suggest that endocytotic activities of endothelial cells involve different processes. Vacuoles formed by marginal folds, vacuoles formed by endothelial surface projections or deep invaginations of the plasma membrane, 600–800 Å vesicles, and coated vesicles all seem to differ in the nature of the substances which they endocytose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号