首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronavirus gene expression involves proteolytic processing of the gene 1-encoded polyprotein(s), and a key enzyme in this process is the viral 3C-like proteinase. In this report, we describe the biosynthesis of the human coronavirus 229E 3C-like proteinase in Escherichia coli and the enzymatic properties, inhibitor profile, and substrate specificity of the purified protein. Furthermore, we have introduced single amino acid substitutions and carboxyl-terminal deletions into the recombinant protein and determined the ability of these mutant 3C-like proteinases to catalyze the cleavage of a peptide substrate. Using this approach, we have identified the residues Cys-3109 and His-3006 as being indispensable for catalytic activity. Our results also support the involvement of His-3127 in substrate recognition, and they confirm the requirement of the carboxyl-terminal extension found in coronavirus 3C-like proteinases for enzymatic activity. These data provide experimental evidence for the relationship of coronavirus 3C-like proteinases to other viral chymotrypsin-like enzymes, but they also show that the coronavirus proteinase has additional, unique properties.  相似文献   

2.
The murine coronavirus mouse hepatitis virus gene 1 is expressed as a polyprotein, which is cleaved into multiple proteins posttranslationally. One of the proteins is p28, which represents the amino-terminal portion of the polyprotein and is presumably generated by the activity of an autoproteinase domain of the polyprotein (S. C. Baker, C. K. Shieh, L. H. Soe, M.-F. Chang, D. M. Vannier, and M. M. C. Lai, J. Virol. 63:3693-3699, 1989). In this study, the boundaries and the critical amino acid residues of this putative proteinase domain were characterized by deletion analysis and site-directed mutagenesis. Proteinase activity was monitored by examining the generation of p28 during in vitro translation in rabbit reticulocyte lysates. Deletion analysis defined the proteinase domain to be within the sequences encoded from the 3.6- to 4.4-kb region from the 5' end of the genome. A 0.7-kb region between the substrate (p28) and proteinase domain could be deleted without affecting the proteolytic cleavage. However, a larger deletion (1.6 kb) resulted in the loss of proteinase activity, suggesting the importance of spacing sequences between proteinase and substrate. Computer-assisted analysis of the amino acid sequence of the proteinase domain identified potential catalytic cysteine and histidine residues in a stretch of sequence distantly related to papain-like cysteine proteinases. The role of these putative catalytic residues in the proteinase activity was studied by site-specific mutagenesis. Mutations of Cys-1137 or His-1288 led to a complete loss of proteinase activity, implicating these residues as essential for the catalytic activity. In contrast, most mutations of His-1317 or Cys-1172 had no or only minor effects on proteinase activity. This study establishes that mouse hepatitis virus gene 1 encodes a proteinase domain, in the region from 3.6 to 4.4 kb from the 5' end of the genome, which resembles members of the papain family of cysteine proteinases and that this proteinase domain is responsible for the cleavage of the N-terminal peptide.  相似文献   

3.
Rhinovirus and enterovirus 2A proteinases stimulate translation initiation driven from the cognate internal ribosome entry segment (IRES) (S. J. Hambidge and P. Sarnow, Proc. Natl. Acad. Sci. USA 89:10272-10276, 1992; H.-D. Liebig, E. Ziegler, R. Yan, K. Hartmuth, H. Klump, H. Kowalski, D. Blaas, W. Sommergruber, L. Frasel, B. Lamphear, R. Rhoads, E. Kuechler, and T. Skern, Biochemistry 32:7581-7588, 1993). Given the functional similarities between the foot-and-mouth disease virus (FMDV) L proteinase and these 2A proteinases (autocatalytic excision from the nascent viral polyprotein and cleavage of eIF-4 gamma), we investigated whether the FMDV L proteinase would also be able to stimulate translation initiation. We found that purified recombinant FMDV Lb proteinase could stimulate in vitro translation driven from a rhinovirus or enterovirus IRES by 5- to 10-fold. In contrast, stimulation of translation initiation on a cardiovirus IRES by this proteinase was minimal, and stimulation of translation driven from the cognate FMDV IRES could not be evidenced. Studies using an inhibitor or a mutant Lb proteinase indicated that stimulation of IRES-driven translation is mediated via proteolysis of some cellular component(s). Our studies also demonstrated that the Lb proteinase is capable of stimulating initiation of translation on an uncapped cellular message. Unexpectedly, and in contrast to the 2A proteinases, the Lb proteinase specifically cleaved the products of the two reporter genes used in this study: Xenopus laevis cyclin B2 and influenza virus NS. Therefore, we also set out to investigate the requirements for substrate recognition by the Lb proteinase. Purified recombinant Lb proteinase recognized at least one mengovirus polypeptide and specifically cleaved human cyclin A and poliovirus replicase-related polypeptides. In the latter case, the site(s) of cleavage was located within the N-terminal part of polypeptide 3D. Sequence comparisons revealed no significant primary sequence similarities between the target proteins and the two sites already known to be recognized by the FMDV L proteinase.  相似文献   

4.
Polyprotein processing of Theiler''s murine encephalomyelitis virus.   总被引:12,自引:10,他引:2       下载免费PDF全文
R P Roos  W P Kong    B L Semler 《Journal of virology》1989,63(12):5344-5353
  相似文献   

5.
6.
The proteins of flaviviruses are translated as a single long polyprotein which is co- and posttranslationally processed by both cellular and viral proteinases. We have studied the processing of flavivirus polyproteins in vitro by a viral proteinase located within protein NS3 that cleaves at least three sites within the nonstructural region of the polyprotein, acting primarily autocatalytically. Recombinant polyproteins in which part of the polyprotein is derived from yellow fever virus and part from dengue virus were used. We found that polyproteins containing the yellow fever virus cleavage sites were processed efficiently by the yellow fever virus enzyme, by the dengue virus enzyme, and by various chimeric enzymes. In contrast, dengue virus cleavage sites were cleaved inefficiently by the dengue virus enzyme and not at all by the yellow fever virus enzyme. Studies with chimeric proteinases and with site-directed mutants provided evidence for a direct interaction between the cleavage sites and the proposed substrate-binding pocket of the enzyme. We also found that the efficiency and order of processing could be altered by site-directed mutagenesis of the proposed substrate-binding pocket.  相似文献   

7.
8.
Processing of the hepatitis C virus polyprotein is accomplished by a series of cotranslational and posttranslational cleavages mediated by host cell signalases and two virally encoded proteinases. Of these the NS3 proteinase is essential for processing at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions. Processing between NS3 and NS4A occurs in cis, implying an intramolecular reaction mechanism, whereas cleavage at the other sites can also be mediated in trans. Sequence analysis of the amino termini of mature cleavage products and comparisons of amino acid residues around the scissile bonds of various hepatitis C virus isolates identified amino acid residues which might contribute to substrate specificity and processing efficiency: an acidic amino acid at the P6 position, a Thr or Cys at the P1 position, and a Ser or Ala at the P1' position. To study the importance of these residues for NS3-mediated cleavage we have undertaken a mutational analysis using an NS3'-5B polyprotein expressed by recombinant vaccinia viruses in mammalian cells. For all NS3-dependent cleavage sites P1 substitutions had the most drastic effects on cleavage efficiency, showing that amino acid residues at this position are the most critical substrate determinants. Since less drastic effects were found for substitutions at the P1' position, these residues appear to be less important for proper cleavage. For all cleavage sites the P6 acidic residue was dispensable, suggesting that it is not essential for substrate recognition and subsequent cleavage. Analysis of a series of mutations at the NS3/4A site revealed great flexibility for substitutions compared with more stringent requirements at the trans cleavage sites. On the basis of these results we propose a model in which processing in cis is determined primarily by polyprotein folding, whereas cleavage in trans is governed not only by the structure of the polyprotein but also by specific interactions between the proteinase and the polyprotein substrate at or around the scissile bond.  相似文献   

9.
Mouse hepatitis virus (MHV) is a 31-kb positive-strand RNA virus that is replicated in the cytoplasm of infected cells by a viral RNA-dependent RNA polymerase, termed the replicase. The replicase is encoded in the 5'-most 22 kb of the genomic RNA, which is translated to produce a polyprotein of >800 kDa. The replicase polyprotein is extensively processed by viral and perhaps cellular proteinases to give rise to a functional replicase complex. To date, two of the MHV replicase-encoded proteinases, papain-like proteinase 1 (PLP1) and the poliovirus 3C-like proteinase (3CLpro), have been shown to process the replicase polyprotein. In this report, we describe the cloning, expression, and activity of the third MHV proteinase domain, PLP2. We show that PLP2 cleaves a substrate encoding the first predicted membrane-spanning domain (MP1) of the replicase polyprotein. Cleavage of MP1 and release of a 150-kDa intermediate, p150, are likely to be important for embedding the replicase complex in cellular membranes. Using an antiserum (anti-D11) directed against the C terminus of the MP1 domain, we verified that p150 encompasses the MP1 domain and identified a 44-kDa protein (p44) as a processed product of p150. Pulse-chase experiments showed that p150 is rapidly generated in MHV-infected cells and that p44 is processed from the p150 precursor. Protease inhibitor studies revealed that unlike 3CLpro activity, PLP2 activity is not sensitive to cysteine protease inhibitor E64d. Furthermore, coexpression studies using the PLP2 domain and a substrate encoding the MP1 cleavage site showed that PLP2 acts efficiently in trans. Site-directed mutagenesis studies confirmed the identification of cysteine 1715 as a catalytic residue of PLP2. This study is the first to report enzymatic activity of the PLP2 domain and to demonstrate that three distinct viral proteinase activities process the MHV replicase polyprotein.  相似文献   

10.
Tobacco etch virus (TEV) encodes three proteinases that catalyze processing of the genome-encoded polyprotein. The P1 proteinase originates from the N terminus of the polyprotein and catalyzes proteolysis between itself and the helper component proteinase (HC-Pro). Mutations resulting in substitution of a single amino acid, small insertions, or deletions were introduced into the P1 coding sequence of the TEV genome. Deletion of the N-terminal, nonproteolytic domain of P1 had only minor effects on virus infection in protoplasts and whole plants. Insertion mutations that did not impair proteolytic activity had no measurable effects regardless of whether the modification affected the N-terminal nonproteolytic or C-terminal proteolytic domain. In contrast, three mutations (termed S256A, F, and delta 304) that debilitated P1 proteolytic activity rendered the virus nonviable, whereas a fourth proteinase-debilitating mutation (termed C) resulted in a slow-infection phenotype. A strategy was devised to determine whether the defect in the P1 mutants was due to an inactive proteinase domain or due simply to a lack of proteolytic maturation between P1 and HC-Pro. Sequences coding for a surrogate cleavage site recognized by the TEV NIa proteinase were inserted into the genome of each processing-debilitated mutant at positions that resulted in NIa-mediated proteolysis between P1 and HC-Pro. The infectivity of each mutant was restored by these second-site modifications. These data indicate that P1 proteinase activity is not essential for viral infectivity but that separation of P1 and HC-Pro is required. The data also provide evidence that the proteinase domain is involved in additional, nonproteolytic functions.  相似文献   

11.
12.
The virally encoded 3C proteinases of picornaviruses process the polyprotein produced by the translation of polycistronic viral mRNA. The X-ray crystallographic structure of a catalytically active mutant of the hepatitis A virus (HAV) 3C proteinase (C24S) has been determined. Crystals of this mutant of HAV 3C are triclinic with unit cell dimensions a = 53.6 A, b = 53.5 A, c = 53.2 A, alpha = 99.1 degrees, beta = 129.0 degrees, and gamma = 103.3 degrees. There are two molecules of HAV 3C in the unit cell of this crystal form. The structure has been refined to an R factor of 0.211 (Rfree = 0.265) at 2.0-A resolution. Both molecules fold into the characteristic two-domain structure of the chymotrypsin-like serine proteinases. The active-site and substrate-binding regions are located in a surface groove between the two beta-barrel domains. The catalytic Cys 172 S(gamma) and His 44 N(epsilon2) are separated by 3.9 A; the oxyanion hole adopts the same conformation as that seen in the serine proteinases. The side chain of Asp 84, the residue expected to form the third member of the catalytic triad, is pointed away from the side chain of His 44 and is locked in an ion pair interaction with the epsilon-amino group of Lys 202. A water molecule is hydrogen bonded to His 44 N(delta1). The side-chain phenolic hydroxyl group of Tyr 143 is close to this water and to His 44 N(delta1) and may be negatively charged. The glutamine specificity for P1 residues of substrate cleavage sites is attributed to the presence of a highly conserved His 191 in the S1 pocket. A very unusual environment of two water molecules and a buried glutamate contribute to the imidazole tautomer believed to be important in the P1 specificity. HAV 3C proteinase has the conserved RNA recognition sequence KFRDI located in the interdomain connection loop on the side of the molecule diametrically opposite the proteolytic site. This segment of polypeptide is located between the N- and C-terminal helices, and its conformation results in the formation of a well-defined surface with a strongly charged electrostatic potential. Presumably, this surface of HAV 3C participates in the recognition of the 5' and 3' nontranslated regions of the RNA genome during viral replication.  相似文献   

13.
The tobacco etch potyvirus (TEV) polyprotein is proteolytically processed by three viral proteinases (NIa, HC-Pro, and P1). While the NIa and HC-Pro proteinases each provide multiple functions essential for viral infectivity, the role of the P1 proteinase beyond its autoproteolytic activity is understood poorly. To determine if P1 is necessary for genome amplification and/or virus movement from cell to cell, a mutant lacking the entire P1 coding region (delta P1 mutant) was produced with a modified TEV strain (TEV-GUS) expressing beta-glucuronidase (GUS) as a reporter, and its replication and movement phenotypes were assayed in tobacco protoplasts and plants. The delta P1 mutant accumulated in protoplasts to approximately 2 to 3% the level of parental TEV-GUS, indicating that the P1 protein may contribute to but is not strictly required for viral RNA amplification. The delta P1 mutant was capable of cell-to-cell and systemic (leaf-to-leaf) movement in plants but at reduced rates compared with parental virus. This is in contrast to the S256A mutant, which encodes a processing-defective P1 proteinase and which was nonviable in plants. Both delta P1 and S256A mutants were complemented by P1 proteinase expressed in a transgenic host. In transgenic protoplasts, genome amplification of the delta P1 mutant relative to parental virus was stimulated five- to sixfold. In transgenic plants, the level of accumulation of the delta P1 mutant was stimulated, although the rate of cell-to-cell movement was the same as in nontransgenic plants. Also, the S256A mutant was capable of replication and systemic infection in P1-expressing transgenic plants. These data suggest that, in addition to providing essential processing activity, the P1 proteinase functions in trans to stimulate genome amplification.  相似文献   

14.
Processing of the hepatitis C virus polyprotein is mediated by host cell signalases and at least two virally encoded proteinases. Of these, the serine-type proteinase encompassing the amino-terminal one-third of NS3 is responsible for cleavage at the four sites carboxy terminal of NS3. The activity of this proteinase is modulated by NS4A, a 54-amino-acid polyprotein cleavage product essential for processing at the NS3/4A, NS4A/4B, and NS4B/5A sites and enhancing cleavage efficiency between NS5A and NS5B. Using the vaccinia virus-T7 hybrid system to express hepatitis C virus polypeptides in BHK-21 cells, we studied the role of NS4A in proteinase activation. We found that the NS3 proteinase and NS4A form a stable complex when expressed as a single polyprotein or as separate molecules. Results from deletion mapping show that the minimal NS4A domain required for proteinase activation is located in the center of NS4A between amino acids 1675 and 1686 of the polyprotein. Amino acid substitutions within this domain destabilizing the NS3-NS4A complex also impair trans cleavage at the NS4A-dependent sites. Similarly, deletion of amino-terminal NS3 sequences impairs complex formation as well as cleavage at the NS4B/5A site but not at the NS4A-independent NS5A/5B site. These results suggest that a stable NS3-NS4A interaction is important for cleavage at the NS4A-dependent sites and that amino-terminal NS3 sequences and the central NS4A domain are directly involved in complex formation.  相似文献   

15.
Most details of the processing of the hepatitis A virus (HAV) polyprotein are known. Unique among members of the family Picornaviridae, the primary cleavage of the HAV polyprotein is mediated by 3Cpro, the only proteinase known to be encoded by the virus, at the 2A/2B junction. All other cleavages of the polyprotein have been considered to be due to 3Cpro, although the precise location and mechanism responsible for the VP1/2A cleavage have been controversial. Here we present data that argue strongly against the involvement of the HAV 3Cpro proteinase in the maturation of VP1 from its VP1-2A precursor. Using a heterologous expression system based on recombinant vaccinia viruses directing the expression of full-length or truncated capsid protein precursors, we show that the C terminus of the mature VP1 capsid protein is located near residue 764 of the polyprotein. However, a proteolytically active HAV 3Cpro that was capable of directing both VP0/VP3 and VP3/VP1 cleavages in vaccinia virus-infected cells failed to process the VP1-2A precursor. Using site-directed mutagenesis of an infectious molecular clone of HAV, we modified potential VP1/2A cleavage sites that fit known 3Cpro recognition criteria and found that a substitution that ablates the presumed 3Cpro dipeptide recognition sequence at Glu764-Ser765 abolished neither infectivity nor normal VP1 maturation. Altered electrophoretic mobility of VP1 from a viable mutant virus with an Arg764 substitution indicated that this residue is present in VP1 and that the VP1/2A cleavage occurs downstream of this residue. These data indicate that maturation of the HAV VP1 capsid protein is not dependent on 3Cpro processing and may thus be uniquely dependent on a cellular proteinase.  相似文献   

16.
Several of the cleavages required to generate the mature nonstructural proteins from the flaviviral polyprotein are known to be mediated by a complex consisting of NS2B and a serine proteinase domain located in the N-terminal one-third of NS3. These cleavages typically occur after two basic residues followed by a short side chain residue. Cleavage at a similar dibasic site in the structural region is believed to produce the C terminus of the virion capsid protein. To study this cleavage, we developed a cell-free trans cleavage assay for yellow fever virus (YF)-specific proteolytic activity by using a substrate spanning the C protein dibasic site. Cleavage at the predicted site was observed when the substrate was incubated with detergent-solubilized lysates from YF-infected BHK cells. NS2B and the NS3 proteinase domain were the only YF-specific proteins required for this cleavage. Cell fractionation studies demonstrated that the YF-specific proteolytic activity was membrane associated and that activity could be detected only after detergent solubilization. Previous cell-free studies led to a hypothesis that processing in the C-prM region involves (i) translation of C followed by translocation and core glycosylation of prM by using an internal signal sequence, (ii) signalase cleavage to produce a membrane-anchored form of the C protein (anchC) and the N terminus of prM, and (iii) NS2B-3-mediated cleavage at the anchC dibasic site to produce the C terminus of the virion C protein. However, the results of in vivo transient-expression studies do not support this temporal cleavage order. Rather, expression of a YF polyprotein extending from C through the N-terminal one-third of NS3 revealed that C-prM processing, but not translocation, was dependent on an active NS2B-3 proteinase. This suggests that signalase-mediated cleavage in the lumen of the endoplasmic reticulum may be dependent on prior cleavage at the anchC dibasic site. Possible pathways for processing in the C-prM region are outlined and discussed.  相似文献   

17.
C Lin  B M Prgai  A Grakoui  J Xu    C M Rice 《Journal of virology》1994,68(12):8147-8157
The hepatitis C virus H strain (HCV-H) polyprotein is cleaved to produce at least 10 distinct products, in the order of NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. An HCV-encoded serine proteinase activity in NS3 is required for cleavage at four sites in the nonstructural region (3/4A, 4A/4B, 4B/5A, and 5A/5B). In this report, the HCV-H serine proteinase domain (the N-terminal 181 residues of NS3) was tested for its ability to mediate trans-processing at these four sites. By using an NS3-5B substrate with an inactivated serine proteinase domain, trans-cleavage was observed at all sites except for the 3/4A site. Deletion of the inactive proteinase domain led to efficient trans-processing at the 3/4A site. Smaller NS4A-4B and NS5A-5B substrates were processed efficiently in trans; however, cleavage of an NS4B-5A substrate occurred only when the serine proteinase domain was coexpressed with NS4A. Only the N-terminal 35 amino acids of NS4A were required for this activity. Thus, while NS4A appears to be absolutely required for trans-cleavage at the 4B/5A site, it is not an essential cofactor for serine proteinase activity. To begin to examine the conservation (or divergence) of serine proteinase-substrate interactions during HCV evolution, we demonstrated that similar trans-processing occurred when the proteinase domains and substrates were derived from two different HCV subtypes. These results are encouraging for the development of broadly effective HCV serine proteinase inhibitors as antiviral agents. Finally, the kinetics of processing in the nonstructural region was examined by pulse-chase analysis. NS3-containing precursors were absent, indicating that the 2/3 and 3/4A cleavages occur rapidly. In contrast, processing of the NS4A-5B region appeared to involve multiple pathways, and significant quantities of various polyprotein intermediates were observed. NS5B, the putative RNA polymerase, was found to be significantly less stable than the other mature cleavage products. This instability appeared to be an inherent property of NS5B and did not depend on expression of other viral polypeptides, including the HCV-encoded proteinases.  相似文献   

18.
Flavivirus proteins are produced by co- and posttranslational proteolytic processing of a large polyprotein by both host- and virus-encoded proteinases. The viral serine proteinase, which consists of NS2B and NS3, is responsible for cleavage of at least four dibasic sites (2A/2B, 2B/3, 3/4A, and 4B/5) in the nonstructural region. Since the amino acid sequence preceding NS4B shares characteristics with signal peptides used for translocation of nascent polypeptides into the lumen of the endoplasmic reticulum, it has been proposed that cleavage at the 4A/4B site is mediated by a cellular signal peptidase. In this report, cell-free translation and in vivo transient expression assays were used to study processing in the NS4 region of the yellow fever virus polyprotein. With a construct which contained NS4B preceded by 17 residues constituting the putative signal peptide (sig4B), membrane-dependent cleavage at the 4A/4B site was demonstrated in vitro. Surprisingly, processing of NS4A-4B was not observed in cell-free translation studies, and in vivo expression of several yellow fever virus polyproteins revealed that the 4A/4B cleavage occurred only during coexpression of NS2B and the proteinase domain of NS3. Examination of mutant derivatives of the NS3 proteinase domain demonstrated that cleavage at the 4A/4B site correlated with expression of an active NS2B-3 proteinase. From these results, we propose a model in which the signalase cleavage generating the N terminus of NS4B requires a prior NS2B-3 proteinase-mediated cleavage at a novel site (called the 4A/2K site) which is conserved among flaviviruses and located 23 residues upstream of the signalase site. In support of this model, mutations at the 4A/4B signalase site did not eliminate processing in the NS4 region. In contrast, substitutions at the 4A/2K site, which were engineered to block NS2B-3 proteinase-mediated cleavage, eliminated signalase cleavage at the 4A/4B site. In addition, the size of the 3(502)-4A product generated by trans processing of a truncated polyprotein, 3(502)-5(356), was consistent with cleavage at the 4A/2K site rather than at the downstream 4A/4B signalase site.  相似文献   

19.
A Molla  C U Hellen    E Wimmer 《Journal of virology》1993,67(8):4688-4695
A polyprotein cleavage assay has been developed to assay the proteolytic activities in vitro of the 2A proteinases encoded by poliovirus and human rhinovirus 14, which are representative members of the Enterovirus and Rhinovirus genera of picornaviruses, respectively. The elastase-specific substrate-based inhibitors elastatinal and methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone (MPCMK) inhibited both 2A proteinases in vitro. The electrophoretic mobilities of both 2A proteinases were reduced upon incubation with elastatinal, whereas the mobility of a Cys-109-->Ala poliovirus 2Apro mutant was unchanged, an observation suggesting that this inhibitor may have formed a covalent bond with the active-site Cys-109 nucleophile. Iodoacetamide, calpain inhibitor 1, and antipain inhibited poliovirus 2Apro. MPCMK caused a reduction in the yields of the enteroviruses poliovirus type 1 and coxsackievirus A21 and of human rhinovirus 2 in infected HeLa cells but did not affect the growth of encephalomyocarditis virus, a picornavirus of the Cardiovirus genus. MPCMK abrogated the shutoff of host cell protein synthesis that is induced by enterovirus and rhinovirus infection and reduced the synthesis of virus-encoded polypeptides in infected cells. These results indicate that the determinants of substrate recognition by 2A proteinases resemble those of pancreatic and leukocyte elastases. These results may be relevant to the development of broad-range chemotherapeutic agents against entero- and rhinoviruses.  相似文献   

20.
G Donaghy  R Jupp 《Journal of virology》1995,69(2):1265-1270
The BVRF2 gene of Epstein-Barr virus (EBV) shows homology to the UL26 and UL80 genes of herpes simplex virus type 1 (HSV-1) and cytomegalovirus (CMV), respectively. These genes are believed to provide a scaffold protein for the assembly of capsids leading to the formation of infectious viral particles. We have cloned the BVRF2 gene from the B95.8 strain of EBV and shown that the BVRF2 gene product is a polyprotein capable of autoproteolytic cleavage. Two Ala-Ser-containing recognition sequences were identified in the BVRF2 polyprotein at amino acid positions 568/569 and 570/571 where this cleavage was expected to occur. Here, we show that EBV proteinase is capable of cleaving at the first Ala-Ser bond but not the second. Comparison of the processing of the EBV and human CMV assembly domains in vitro by either EBV or human CMV proteinase revealed that, while both proteinases could cleave their native assembly domain, only EBV proteinase was able to cleave the assembly domain of the other virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号