首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
New expression vectors for the fission yeast Schizosaccharomyces pombe   总被引:1,自引:0,他引:1  
M Br?ker  O B?uml 《FEBS letters》1989,248(1-2):105-110
  相似文献   

4.
5.
6.
7.
8.
9.
Transcriptional terminators in the caa-cal operon and cai gene   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

10.
We have isolated the poly(A) polymerase (PAP) encoding gene pla1 [for poly(A) polymerase] from the fission yeast Schizosaccharomyces pombe. Protein sequence alignments with other poly(A) polymerases reveal that pla1 is more closely related to Saccharomyces cerevisiae PAP than to bovine PAP. The two yeast poly(A) polymerases share significant sequence homology not only in the generally conserved N-terminal part but also in the C-terminus. Furthermore, pla1 rescues a S. cerevisiae PAP1 disruption mutant. An extract from the complemented strain is active in the specific in vitro polyadenylation assay. In contrast, recombinant PLA1 protein can not replace bovine PAP in the mammalian in vitro polyadenylation assay. These results indicate a high degree of conservation of the polyadenylation machinery among the evolutionary diverged budding and fission yeasts.  相似文献   

11.
12.
13.
B Dichtl  W Keller 《The EMBO journal》2001,20(12):3197-3209
Recognition of poly(A) sites in yeast pre-mRNAs is poorly understood. Employing an in vitro cleavage system with cleavage and polyadenylation factor (CPF) and cleavage factor IA we show that the efficiency and positioning elements are dispensable for poly(A)-site recognition within a short CYC1 substrate in vitro. Instead, U-rich elements immediately upstream and downstream of the poly(A) site mediate cleavage-site recognition within CYC1 and ADH1 pre-mRNAs. These elements act in concert with the poly(A) site to produce multiple recognition sites for the processing machinery, since combinations of mutations within these elements were most effective in cleavage inhibition. Intriguingly, introduction of a U-rich element downstream of the GAL7 poly(A) site strongly enhanced cleavage, underscoring the importance of downstream sequences in general. RNA- binding analyses demonstrate that cleavage depends on the recognition of the poly(A)-site region by CPF. Consistent with in vitro results, mutation of sequences upstream and downstream of the poly(A) site affected 3'-end formation in vivo. A model for yeast pre-mRNA cleavage-site recognition outlines an unanticipated high conservation of yeast and mammalian 3'-end processing mechanisms.  相似文献   

14.
15.
16.
17.
We show that the polyadenylation site derived from the plant cauliflower mosaic virus (CaMV) is specifically functional in the yeast Saccharomyces cerevisiae. The mRNA 3' endpoints were mapped at the same position in yeast cells as in plants, and the CaMV polyadenylation site was recognized in an orientation-dependent manner. Mutational analysis of the CaMV 3'-end-formation signal revealed that multiple elements are essential for proper activity in yeast cells, including two upstream elements that are situated more than 100 and 43 to 51 nucleotides upstream of the poly(A) addition site and the sequences at or near the poly(A) addition site. A comparison of the sequence elements that are essential for proper function of the CaMV signal in yeast cells and plants showed that both organisms require a distal and a proximal upstream element but that these sequence elements are not identical in yeast cells and plants. The key element for functioning of the CaMV signal in yeast cells is the sequence TAGTATGTA, which is similar to a sequence previously proposed to act in yeast cells as a bipartite signal, namely, TAG ... TATGTA. Deletion of this sequence in the CaMV polyadenylation signal abolished 3'-end formation in yeast cells, and a single point mutation in this motif reduced the activity of the CaMV signal to below 15%. These results indicate that the bipartite sequence element acts as a signal for 3'-end formation in yeast cells but only together with other cis-acting elements.  相似文献   

18.
Homologous mRNA 3'' end formation in fission and budding yeast.   总被引:7,自引:1,他引:6       下载免费PDF全文
T Humphrey  P Sadhale  T Platt    N Proudfoot 《The EMBO journal》1991,10(11):3503-3511
Sequences resembling polyadenylation signals of higher eukaryotes are present downstream of the Schizosaccharomyces pombe ura4+ and cdc10+ coding regions and function in HeLa cells. However, these and other mammalian polyadenylation signals are inactive in S. pombe. Instead, we find that polyadenylation signals of the CYC1 gene of budding yeast Saccharomyces cerevisiae function accurately and efficiently in fission yeast. Furthermore, a 38 bp deletion which renders this RNA processing signal non-functional in S. cerevisiae has the equivalent effect in S. pombe. We demonstrate that synthetic pre-mRNAs encoding polyadenylation sites of S. pombe genes are accurately cleaved and polyadenylated in whole cell extracts of S. cerevisiae. Finally, as is the case in S. cerevisiae, DNA sequences encoding regions proximal to the S. pombe mRNA 3' ends are found to be extremely AT rich; however, no general sequence motif can be found. We conclude that although fission yeast has many genetic features in common with higher eukaryotes, mRNA 3' end formation is significantly different and appears to be formed by an RNA processing mechanism homologous to that of budding yeast. Since fission and budding yeast are evolutionarily divergent, this lower eukaryotic mechanism of mRNA 3' end formation may be generally conserved.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号